
My First PIC Projects

An introduction to the PIC processor.

© Bubble Software 2000

My First PIC Projects - Page 1

mICro’s First Projects

Introduction

Flash That LED

Define The Problem

Writing The Software

Mnemonics

The Assembler

Labels

Using a text assembler

The Flowchart

MicroPlan Assembler

The Simulator

The Real World

7 segment LED display

The Counter

Using Switches

My First PIC Projects - Page 2

Introduction

Welcome to MICRO’s. I know you are itching to get started with your new
software and begin programming PICs as soon as possible, so this introduction
will get you familiar with the MICRO’s suite of software and during the process
you will also start writing some small programs and hopefully get them working in
the real world.

If you have the MICRO’s Experimenters Kit, then going through the projects will
be quite easy. If you do not have the Experimenters Kit, then you may like to get
a PIC programmer so that you can program the software into a 16F84 chip to
complete the projects.

Before we get going, you have to understand that a PIC, or any other
microcontroller chip for that matter, is just a piece of silicon wrapped in plastic
with pins sticking out to connect it to the outside world. It does not have any
brains, nor can it think for itself, so anything the chip does is the direct result of
our intelligence and imagination. Sometimes you may get the feeling that these
things are alive and are put here to torment your every waking minute, but this is
usually due to bugs in your software, not a personality inside the chip. So please
remember:

The PIC will always do what you tell it to, not necessarily what you want it to.

One other thing that can cause problems is in the way you handle the chip itself.
Your body is more than likely charged with Static Electricity and is usually the
zap you feel when you touch a metal object after walking on nylon carpet or
similar. The PIC’s most definitely do not like this high voltage discharging into
them. It can destroy the functionality of the chip either totally or partially, so
always try to avoid touching the pins with your fingers.

The PIC 16F84 data sheet is available in PDF format on the CD ROM in the
Acrobat directory.

My First PIC Projects - Page 3

Flash That LED

This would have to be the universal number one project for new PIC
programmers. If you have had anything to do with writing software for PC’s, then
it would be the equivalent of writing “hello world” on the monitor for the first time.

You might be thinking at this stage...“What a boring project. I want to create a
robot that does amazing things, not mess around with silly ‘hello world’ or LED
flash programs.”

Patience my friend. Things like that will come in due course, and as the old
saying goes, “You have to crawl before you can walk”.

OK then, so how do we get started?

You might be tempted to jump straight in and write volumes of code right from
the start, but I can only say, that in all probability, your software will not work.
Now this might sound a bit tedious, but “planning” is the best way to begin any
piece of new software. Believe me, in the long run, your code will stand a much
better chance of working and it will save you valuable time. Other benefits are
that your code will be structured and documented much better, which means you
can read through and understand it more easily in the future if the need arises.

So just how do we get this piece of silicon to do our bidding? In this case - flash
a LED.

Fundamentally, the PIC needs three things to make it work.

1) 5 volt power source.
2) Clock source
3) Software

The 5 volt supply is there to power the chip. The clock source gives the chip the
ability to process instructions. The software is a list of instructions that we
create. The PIC will follow these to the letter with no exceptions, so we must
make sure that they are written correctly or our program will not work as
intended.

My First PIC Projects - Page 4

Define the problem

To begin planning we must first define the LED flash problem that is going to be
solved by using a PIC. This is the physical needs of the project. You can’t write
reams of software without knowing what the PIC is going to control. You may find
that you need to alter hardware and software as you progress, but don’t be
discouraged. This is normal for a lot of projects and is called ‘Prototyping’.

We can start this discussion by saying that we must have a voltage source
connected to the LED to make it light. Usually we put a resistor in series with the
LED to limit the current through it to a safe level and in most LED’s the maximum
current is about 20mA.

Quite obviously, if the PIC is going to turn the LED on and off for us, then the
LED must be connected to one of it’s pins. These pins can be set as inputs or as
outputs and when they are set as outputs we can make each individual pin have
5 volts connected or 0 volts connected by writing either a Logic 1 or a Logic 0 to
them. We can now define this by saying we set a pin as an output high or as an
output low.

When a pin is an output high it will have 5 volts connected to it and is able to
source 20mA of current. When a pin is an output low it will have 0 volts
connected to it and can sink 25mA of current.

A red LED will consume about 2 volts across it when it is being used. We know
that an output pin will have 5 volts connected to it, so that means the series
resistor needs to consume the remaining 3 volts. 5V - 2V = 3V. By using Ohms
law we can calculate the value of the resistor which must drop 3 volts with 3mA
of current flowing through it and the LED.

V = I R or R = V / I R = 3 / 0.003

Therefore R = 1000 ohms, or 1K.

My First PIC Projects - Page 5

Our circuit so far is a 1K ohm resistor in series with a red LED.

Which pin are we going to use to drive this LED? On the 16F84 there are 13
pins available for us to use and these are divided into 2 Ports.

PortA has 5 pins which are numbered RA0 - RA4.
PortB has 8 pins which are numbered RB0 - RB7.

At this stage you might think that we can use any one of these, and you would
be right - except for one thing. Pin RA4 is an open collector, which means that
it can only connect a pin to 0 volts not 5 volts. Therefore our LED would not turn
on if the LED was connected between this pin and ground. It would need to be
connected between this pin and 5 volts.

There are lots of little hidden “gotcha’s” that exist in the world of microcontrollers
and the best way of knowing about them is by close examination of the data
book. You will remember most of these tricks after you become familiar with a
particular chip, but even the most experienced programmers can get caught with
these problems sometimes.

Even though we can use any pin to drive our LED circuit, for this example we will
use the open collector pin RA4. We are going to use this pin because it
highlights the fact that it operates differently from all the others.

To summarise our project so far, we are going to
flash a red LED in series with a 1K ohm resistor
from PortA pin RA4. RA4 can only sink current to
ground, so the LED cathode is connected to this
pin via a 1K ohm resistor. As you may already
know, a LED can only work if the Cathode is more
negative than the Anode, so the Anode side of the
LED will be connected to the 5 volt supply.

You can easily tell the cathode from the anode. The cathode pin will have a flat
surface moulded next to it into the red plastic, and the anode pin is longer than
the cathode pin.

Now that we have our LED circuit figured out, the next stage is to write the
software that will flash it for us.

My First PIC Projects - Page 6

To find out more about how the PIC Port Pins work, click on the blue link to run
the program called MicroPort. This is quite a lengthy program, so at this stage
you may like to continue instead.

Look at the file called program.pdf to see how to build the Experimenters Kit.
These files are located in the same directory where the software was installed.
You can click on the blue links to activate them.

Writing The Software

There are quite a few ways to create software for the PIC. You can write it with a
simple text editor, or use MPLAB from Microchip, a Basic compiler such as
MicroBasic, or you can use the assembler called MicroPlan.

The PIC doesn’t care what method you use to write the software because it only
understands raw HEX code which is placed into the chip by using an appropriate
programmer.

This is a sample of HEX code.

:1000000008308500003086008316173085003E30AA
:10001000860083128F0190018221900B0C283330CF
:1000200091003030920034309300413094005821D8
:100030000F1817284C300E060319362856300E06B6

It’s not very meaningful is it, but that does not matter to us. We are not
computers, so it is not in our best interests to understand what this data means.
What does interest us as programmers, is just how do we create a data listing
like this.

The answer is - by using an Assembler.

This is quite an ingenious piece of software because it can read a text file that
we have created for our program and turn it into a data file similar to the sample
above. We can actually write our programs by collecting all the HEX values that
our program will use, and then create a data file ourselves. The trouble with that
idea is that it is a very tedious task and it would be terribly painful to try and find
errors in it.

My First PIC Projects - Page 7

HEX numbers may be new to you so it will be best to have a quick look at them.
At some stage, you may need to use them in your programs as well as Decimal
and Binary numbers.

Number Systems

Any computer system, whether it be a PIC a PC or a gigantic main frame, can
only understand these 2 things.

One’s and Zero’s - 1’s and 0’s.

The reason is quite simple. A computer is made up of millions of switches that
can either be on or off. If a switch is on, it has a 1 state. If a switch is off, it has a
0 state. In computer terms these are called Logic States.

Logic 1 - switch is on.
Logic 0 - switch is off.

It is exactly as we mentioned before when we were talking about the output port
pins of the PIC. If a pin is output high then it is Logic 1 or 5 volts. If the pin is
output low then it is Logic 0 or 0 volts. If a pin is configured as an input and 5
volts is connected to this pin, then the PIC would ‘see’ a Logic 1. Similarly, the
PIC would ‘see’ a Logic 0 on this pin if 0 volts were connected.

We were taught to count in a Base 10 or Decimal number system because we
have 10 fingers on our hands. In this system, we add 1 to each number until we
reach 9. We then have to add an extra digit to
the number to equal ten. This pattern continues
until we reach 99 and then we place another
digit in, and so on.

The computer uses a Base 2 or Binary number
system because it only has 2 Logic states to
work with. If we have only got the numbers 1 and
0 to use, it would seem obvious that after the
number 1, we have to start adding more
numbers to the left. If we count from 0 to 15 this
is how it would look in Decimal and Binary.

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

My First PIC Projects - Page 8

Now you may be able to see how a computer can represent numbers from 0 to
15. To do this it would need at least 4 switches because the number 15
represented in Binary is 4 digits long. Another way to say that, is the number is 4
binary digits long. The term “Binary Digits” is often abbreviated to “Bits”, hence
our binary number is now 4 bits long, or just 4 bits. Perhaps we should redraw
the table to emphasise the bit count. Remember, 0 bits represent a logic 0 value
so we should not leave them out.

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

The HEX number system is Base 16, that is you count 16 numbers before
adding an extra digit to the left. This is illustrated in the table below.

Decimal Binary HEX

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Notice how letters are used after the number 9, and perhaps you can see why
we only counted up to the number 15. This is a nice even 4 bit number and in
computer terms this is called a NIBBLE.

My First PIC Projects - Page 9

If you look at the data sheet for the PIC 16F84, you will see that it is an 8 bit
device. That means it can only deal with Binary numbers that are 8 bits wide.
This is how 8 bit numbers are represented.

Decimal Binary HEX

0 00000000 00
1 00000001 01
2 00000010 02
3 00000011 03
4 00000100 04
5 00000101 05
6 00000110 06
7 00000111 07
8 00001000 08
9 00001001 09
10 00001010 0A
11 00001011 0B
12 00001100 0C
13 00001101 0D
14 00001110 0E
15 00001111 0F
16 00010000 10
17 00010001 11
18 00010010 12
- - - - - -
252 11111100 FC
253 11111101 FD
254 11111110 FE
255 11111111 FF

Looking at this table, you can see that an 8 bit Binary number can have a
maximum value of 255 in Decimal or FF in HEX.

8 bit Binary numbers are called BYTES.

Our binary numbers can get quite large, and as they do so they will get more
complicated and harder to understand. We are not computers, but we want to
understand what we write for them, so with the help of an assembler we can use
Decimal, Binary and Hex numbers in our software.

Have a look at a 32 bit binary number.

10001100101000001000110010100000

It’s not hard to see why Hex and Decimal are easier to use. Imagine a 64 bit
number and larger still. These are common in today’s computers and are
sometimes used with PIC’s.

My First PIC Projects - Page 10

Lets try to see what this value equals.

First off, split the number into Bytes.

10001100 10100000 10001100 10100000

Looking Easier - Now split these into nibbles.

1000 1100 1010 0000 1000 1100 1010 0000

Even easier - Now convert these into Hex. This may be difficult at first, but
persevere. After awhile you will be able to convert Binary to Hex and vice versa
quite easily.

8 C A 0 8 C A 0

Combine the Hex numbers for our result.

8CA08CA0

To show that we are talking in Hex values we put in a little (h) after the number
like this.

8CA08CA0h

Lets convert that hex number back to Decimal again.

8 C A 0 8 C A 0

Remember in Decimal, each value in the columns increases by a power of 10 as
we move to the left, and in Binary they increase by a power of 2. In Hex, as you
may have guessed, they increase by a power of 16. Be like me if you wish to,
cheat and use a calculator to convert between the three number systems, it is
much easier. In fact having a calculator that does these conversions is a very
good investment for a programmer.

My First PIC Projects - Page 11

Lets start from right to left and convert each individual hex number to decimal.

Hex Decimal Multiplier Calculate Result

0 0 1 0 x 1 0
A 10 16 10 x 16 160
C 12 256 12 x 256 3,072
8 8 4,096 8 x 4,096 32,768
0 0 65,536 0 x 65,536 0
A 10 1,048,576 10 x 1,048,576 10,485,760
C 12 16,777,216 12 x 16,777,216 201,326,592
8 8 268,435,456 8 x 268,435,456 2,147,483,648

Add up the last column and we get a total of 2,359,332,000.

Therefore:

10001100101000001000110010100000 = 8CA08CA0h = 2,359,332,000.

Isn’t it lucky that we don’t have to think like computers.

The PIC can only deal with individual 8 bit numbers, but as your programming
skills increase and depending on your software requirements, you will eventually
need to know how to make it work with larger numbers.

When you combine 2 Bytes together, the Binary number becomes a WORD.

PROGRAMMING TIP:

Break large problems into many smaller ones because the overall
problem will be much easier to solve. This is when planning becomes
important.

Getting back to the topic of assemblers, you should remember that the program
data file that we saw earlier is just a list of HEX numbers. Most of these numbers
represent the program instructions and any data that these instructions need to
work with.

To combine data and instructions together, the PIC uses a special Binary
number that is 14 bits wide. If you look at the data sheet, you will see that the
PIC 16F84 has 1024 14 bit words available for program storage. In computer
language 1024 means 1K, so this PIC has 1K of program space.

My First PIC Projects - Page 12

We don’t want to be overly concerned with Binary numbers when it comes to
writing software so we need to become familiar with a language called
ASSEMBLER. This language enables us to write code in such a way that we can
understand and write it easily.

Some people do not want to write code in assembler because they think it is too
hard to learn, and writing code in a language such as BASIC is much easier.
Sometimes this is true, but sometimes you cannot write tight and fast code with
these “higher level languages” and this may not be the best course of action for
your particular project.

ASSEMBLER IS EASY - EASY - EASY.

This is especially so with PIC’s because there are only 35 instructions to work
with. Sometimes you will get into difficulty with assembler such as solving
problems with multiply and divide, but these routines are freely available from
many sources including the internet. Once you have them, it is usually only a
simple matter of pasting them into your code if needed. Mostly, you will not even
care how they work, but it is a good exercise to learn the techniques involved
because it builds up your own individual knowledge.

Saving special code routines in a directory on your PC can be very productive
and this is termed a ‘Code Library’.

My First PIC Projects - Page 13

Mnemonics

This is a funny looking word. You pronounce it

Nem On Icks.

These are quite a powerful concept in programming because they provide an
interface between us mere mortals and computers. It can become very confusing
to write software if we have to refer to RAM addresses and data values by their
binary numbers. Mnemonics makes it a lot easier for us to understand what we
are writing by allowing us to assign names and labels to Instructions, RAM
locations and Data values.

As an example, what do you think this means?

0000100000000011.

Any ideas?

What about this?

0803h

Try this.

movf 03h, 0

Lets change it to something we can understand using Mnemonics.

movf STATUS, W

That’s a little easier to understand don’t you think. It is exactly the same thing as
the original Binary number except the first way the computer understands, the
second and third ways we may understand, but the fourth way is quite easy to
understand.

It means...

Move the contents of a file register called Status into W.

It’s all too easy. Of course we still need to understand what MOVF, STATUS and
W mean, but that will come soon.

My First PIC Projects - Page 14

The assembler is used to generate code that the PIC can understand by
translating these mnemonics into binary values and store them as a HEX data
file ready for a programmer to use. The standard assembler for a PIC is called
MPASM for DOS, and MPASMWIN for Windows. These are free programs that
are available from Microchip and are also supplied with MICRO’s after you
install MPLAB from the CD.

The Assembler

Writing code for an assembler is quite easy, but as with most things there are a
few things to learn.

First off, the code you are writing for the assembler is called “Source Code”.
After the assembler has assembled the source code successfully, it generates
another file that is called “Object Code”. This is the HEX data file we saw earlier.

When you use the assembler program, there are some options that you can
enable or disable such as, generating an error file, case sensitivity in your
source code and a few others. Mostly you can ignore these and leave the default
settings, but when you get more advanced at programming, you may like to
change them to make the assembler work more suitable for your particular
needs.

The assembler must be able to understand every line of source code that you
write or it will generate an error. If this happens, the object code will not be
created and you will not be able to program a chip.

Each line of code in the source file can contain some or all of these types of
information. The order and position of these items on each line is also important.

Labels
Mnemonics
Operands
Comments

Labels must start in the left most column of the text editor. Mnemonics can start
in column two and any other past this point. Operands come after the mnemonic
and are usually separated by a space. Comments can be on any line usually
after an operand, but they can also take up an entire line and are followed by the
semi colon character (;).

My First PIC Projects - Page 15

One or more spaces must separate the labels, mnemonics and operands. Some
operands are seperated by a comma.

Here is a sample of the text that an assembler expects.

 Title "mICro’s Simple Program"

 list p=16f84 ; processor type

;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

start movlw 0x00 ; simple code
 movwf 0x05
 goto start ; do this loop forever

 end

You can see the label called start in column 1. Then comes a tab or space(s)
to separate the label from the mnemonic movlw. Then comes another tab or
space(s) to separate the mnemonic from the operand 0x00. Finally, you can see
the comment which comes after the semi colon ; simple code

Lets have a look at his a bit closer.

The first line has a Title directive. This is a predefined part of the assemblers
internal language and lets you define a name for your source code listing. The
next line has a list assembler directive and tells the assembler what type of
processor it is assembling for. In this case, a 16F84 chip. This can be helpful if
you write too much code for this particular processor to use. The assembler will
decide this while it is building the object code and generate an error if it
encounters a problem. Directives like these control how the assembler builds the
final Object code, and there are quite a few of them available for use so it would
be best to consult the help file for MPLAB or MPASM for further details.

The next lines are just comments put there to help you the programmer know
what is going on.

My First PIC Projects - Page 16

It is vital that you get into the habit of writing comments all over your code. This
will help you understand what you have written especially when you come back
to read it another time. Believe me, it is very easy to get confused trying to follow
the meaning of your code if there is no explanation on how it works.

The next lines tell the assembler the meanings of user defined labels.

Org 0h is another directive that tells the assembler to set the current ROM
address where the following instructions will be placed from. Remember that the
16F84 has 1024 location available for code use. Org 0h tells the assembler to
start loading the instructions starting from ROM address 0. In other words the
movlw 0x00 instruction will occupy ROM location 0 and the movwf 0x05
instruction will occupy ROM location 1. goto start will occupy ROM location
2.

One thing you may have missed here, is the fact that ROM and RAM addresses
start from location 0, not location 1. The ROM space is actually from 0 to 1023,
not from 1 to 1024. Remember 0 is a valid Binary number.

It is probably best to use the correct terminology now to refer to ROM locations
as ROM addresses.

goto start is an instruction mnemonic followed by a label name. The
assembler knows that the instruction start movlw 0x00 is at ROM address
0, so when it sees the instruction goto start, it will generate code to tell the
PIC’s processor to goto ROM address 0 to fetch the next instruction.

So what happens if there is no label called start anywhere in the source
listing? The assembler will complain that it cannot find the label, generate an
error and will not complete the assembly process. Usually these errors are
written to a separate error file and in a listing file as well. These files have the
same name as your source file but with *.err and *.lst extensions.

You cannot have two labels like this with the same name either. That confuses
the assembler because it does not know which particular line you are referring
to. This also generates an error.

Don’t get too worried about error messages. They are simply there to help you
find problems with the way you wrote your code. Look at the list file that is
generated to see the offending line, fix the problem back in the source code and
then reassemble.

You will also receive “warning messages” at times. These are generated to tell
you that you may be doing something wrong, like forgetting to set a page bit.

My First PIC Projects - Page 17

Warning [205]: Ensure page bits are set.

If you are certain that your code is correct, you can ignore them. We will talk
about page bits later.

start movlw 0x00 ; simple code
 movwf 0x05
 goto start ; do this loop forever

Code that is written like this is called a LOOP. That is because the code
executes until the goto start instruction forces the processor to begin again.
This particular code will LOOP forever or until you remove power from the chip.
Your code must have some sort of loop to keep it flowing.

start movlw 0x00 ; simple code
 movwf 0x05

If you had code like this, what would happen after the movwf 0x05 instruction
was executed? The answer is that the PIC would get lost because you have not
given the processor anything to do past this point.

So what exactly does this small piece of code do?

Remember our LED flash problem?

The LED was connected to pin RA4 which is PortA pin 4.

PortA has 5 pins available for us to use, but we were only going to use pin RA4
and forget about the others. If we had to turn the LED on we have to write a
Logic 0 to this pin. Remember that once we have done this, 0 volts will appear
on the pin if it is set as an output.

What value should we write to Port A if we want to set pin RA4 to Logic 0? Here
is a small sample of a binary table.

Decimal Binary

0 000000
1 000001
2 000010
3 000011
16 010000
47 101111

If we consider that pin RA4 is represented by bit 4 in this table we can see that
we can write any value as long as this bit equals 0.

My First PIC Projects - Page 18

Another thing you must consider here, is that we can do this because nothing
else is connected to Port A. If some devices were connected to the other Port A
pins, we need to be more specific about the value we write to Port A so that we
do not upset their operation.

In our case, to turn the LED on, we can write the value 0 to Port A, and to turn
the LED off we can write 16 to PortA. So just how do we do this? If you look at
the original code, this is the first line.

start movlw 0x00 ; simple code

First we have a label called start, followed by the instruction movlw 0x00.

movlw means to move a literal value into the W register. A literal value is any
value that can fit into 8 bits. Remember that the PIC is an 8 bit device. This
means a literal value can be any value from 0 to 255. In this case it is the value
0, or 0x00 which is just a way of writing HEX values. This instruction can also be
written as

 movlw b’00000000’ ; binary notation
 movlw d’0’ ; decimal notation
 movlw 0h ; another type of HEX notation.

Binary notation is quite good for writing to the Ports because any bits that are 1
means the corresponding output Port pin will be at 5 volts, and any that are 0 will
be at 0 volts. The exception is pin RA4 which is at a high impedance state when
it is at Logic 1.

See the program called MicroPort for more details.

Notice the two styles of HEX notations. If any HEX number begins with a letter it
must use the ‘0x’ notation. This is a zero and x. Any other HEX numbers can be
written in either notation.

 movlw 0xAA movlw 34h movlw 2h
 movlw 0x33 movlw 0x00 movlw 0xEA

 movlw FFh This is not allowed, it must be: movlw 0xFF

Looking back at the code, the next line is

movwf 0x05

My First PIC Projects - Page 19

movwf means to move the contents of the W register to the file register
specified. In this case it is RAM address 0x05.

If you look at the 16F84 data sheet, and most other PICs for that matter, you will
see that RAM address 5 is Port A. So in other words, this instruction moves the
contents of W to Port A.

This seems a lot of effort. Why can’t we just write 0 to Port A? Unfortunately the
PIC does not function like that. You cannot directly write any 8 bit values to any
RAM locations. You have to use the W register to do the transfer. That is why it
is called the W or ‘Working Register’.

Labels

We mentioned the use of labels before. With an assembler, we have the luxury
of being able to create our own label names which we can use to define things
like general RAM addresses, special RAM locations, port pins and more.

As an example of this concept we can change our original code...

start movlw 0x00 ; simple code
 movwf 0x05

into this...

start movlw TurnOnLED ; simple code
 movwf PortA

By writing your code in this way, you can just about comprehend the meaning of
these two code lines.

Write a special value to PortA which turns on a LED.

Now this is all very fine except for one thing. How does the assembler know the
meaning of TurnOnLED and PortA? It has the ability to understand all the PIC
instructions like movlw, and also what labels are, but you, as the programmer,
have to tell the assembler the meaning of any ‘new’ labels that you create.

To do this you use the equ assembler directive. This tells the assembler that the
label on the left of the equ directive has the value on the right side.

TurnOnLed equ 0x00 ; value to turn on LED with RA4
PortA equ 0x05 ; PortA RAM address

My First PIC Projects - Page 20

You should note something here, and that is the first equate assigns a value to a
Label that will be used as a Literal, and the second equate assigns a value to a
Label that will be used as a RAM address. These are quite interchangeable by
the way because they are just simple numerical values.

start movlw PortA ; simple code
 movwf TurnOnLED
 goto start ; do this loop forever

This new piece of code is quite valid and makes sense to the assembler. When
the PIC executes this code it will now get the Literal value 0x05 and place it in
W, and then it will get this value from W and place it into RAM address 0x00.
This address is where indirect addressing takes place. Check this out for
yourself in the data book. This code does not make much sense now, but the
assembler does not care what we write. It’s only concern is that it can
successfully assemble this code.

Now that we know about Labels, this is how we can rewrite the original code
listing and make it more readable

 Title "mICro’s Simple Program"

 list p=16f84 ; processor type
;
; -------------
; PROGRAM START
; -------------
;
TurnOnLed equ 0x00 ; value to turn on LED with RA4
PortA equ 0x05 ; PortA RAM address

 org 0h ; startup address = 0000

start movlw TurnOnLed ; simple code
 movwf PortA
 goto start ; do this loop forever

 end

Quite simple isn’t it.

One thing to note is that label names must start in the first column on a separate
line, and you cannot have spaces or TABs before them.

My First PIC Projects - Page 21

Now each time the assembler comes across a Label called TurnOnLED it will
substitute it for the value 0x00. When it comes across a Label called PortA it
will substitute it for the value 0x05. The assembler does not care in the least
what these labels mean. They are there just to make it easier for us to read our
code. Lets have a quick look at how the assembler turns the source code into a
HEX file.

When the assembler begins working, it creates a symbol table which lists all the
labels you created and then links the values you associated with them.

TurnOnLed equ 0x00 ; value to turn on LED with RA4
PortA equ 0x05 ; PortA RAM address

The symbol table will look like this.

SYMBOL TABLE
LABEL VALUE
PortA 00000005
TurnOnLed 00000000

The assembler also has a ROM address counter which is incremented by 1 each
time it assembles a line of code with an instruction in it. This next line is called
an assembler directive and it tells the assembler to set this counter to ROM
address 0.

 org 0h ; startup address = 0000

The next code line has an address label attached to it so the assembler also
adds this to it’s symbol table. At this stage the ROM address counter equals 0 so
the start label gets the value 0.

start movlw TurnOnLed ; simple code

The symbol table will look like this.

SYMBOL TABLE
LABEL VALUE
PortA 00000005
TurnOnLed 00000000
start 00000000

Next on this code line is movlw. If you look at the data book the MOVLW
instruction has a Binary number associated with it. Remember about computers
only understanding 1’s and 0’s. This is how the PIC understands instructions.

My First PIC Projects - Page 22

MOVLW in Binary = 11 00XX kkkk kkkk

We need to decipher this a bit.

The 1100XX is the part of the instruction that tells the processor that it is a
MOVLW instruction. The ‘XX’ part means that it doesn’t matter what value these
two bits are. The ‘kkkk kkkk’ represents the 8 bits of data and will be the
actual Literal Value. The assembler will look up it’s symbol table and find the
label TurnOnLED and return with the value 0. It will then insert this information
into the MOVLW instruction data.

Therefore the complete instruction becomes 11 0000 0000 0000 which is 3000h.

Notice there are 14 bits for the instruction, and that the instruction itself is
represented with the literal data combined. In this way each PIC instruction only
occupies 1 single ROM address in the chip. Therefore the 16F84 with 1K of
ROM space, can store 1024 instructions in total.

The assembler is now finished with this code line because it does not care about
the comment, so it increments it’s address counter by 1 and continues with the
next line.

 movwf PortA

MOVWF = 00 0000 1fff ffff

00 0000 1 are the bits that define the MOVWF instruction and fff ffff are the
bits that define the RAM address where the W register contents will end up. The
assembler looks up PortA in it’s symbol table and returns the value 5.

Therefore the complete instruction becomes 00 0000 1000 0101 which is 0085h.

So far the assembler has generated the HEX numbers 3000h and 0085h.

This is the next line.

 goto start ; do this loop forever

GOTO = 10 1kkk kkkk kkkk

10 1 are the bits that define the GOTO instruction and the kkk kkkk kkkk are
the 11 bits that define the new ROM address that the processor will begin from
after this instruction executes.

My First PIC Projects - Page 23

If you do the math you will see that a number with 11 bits can range from 0 to
2047. This means that a GOTO instruction has enough information to let the
processor jump to any ROM address from 0 to 2047. The 16F84 only has a ROM
address space that ranges from 0 to 1023 so a goto instruction can let the
processor jump to anywhere in this device.

The assembler will look up the symbol table for the label name ‘start’ and
return with the value 0.

Therefore the complete instruction becomes 10 1000 0000 0000 which is 2800h.

The final HEX code assembled for this little program is 3000h 0085h 2800h.

This next line is another assembler directive and tells the assembler that this is
the last line of the source file. Please don’t leave it out or the assembler will get
upset and generate an error.

 end

It’s not hard to imagine now why the assembler will complain if you leave out a
label name or use one that was spelled incorrectly.

After assembly the next page shows what the listing file will look like. If the name
of your source file was first.asm then the list file will be first.lst and the
HEX file will be first.hex. These new files will be created in the same
directory where first.asm is located and are simple text files which can be
viewed with any text editor program such as ‘Notepad’.

If you look through this listing you should be able to verify what has just been
mentioned.

On the far right of the listing, are the current ROM addresses and these
increment as each instruction is added. You will notice that they start off at 0
because of the ORG 0h directive.

If a code line has an instruction on it, then next to the ROM address, you will see
the 4 digit HEX code that represents the instruction.

After the end directive you will see the Symbol Table contents, then how much
of the processors memory was used, and finally, some information on errors that
the assembler may have encountered.

My First PIC Projects - Page 24

MPASM 02.30 Released FIRST.ASM 12-31-1999 17:26:38
PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 Title "mICro’s Simple Program"
 00002
 00003 list p=16f84 ; processor type
 00004
 00005 ; Copyright Bubble Software 2000
 00006 ;
 00007 ; -------------
 00008 ; PROGRAM START
 00009 ; -------------
 00010 ;
00000001 00011 TurnOnLed equ 0x00 ; value to turn on LED with RA4
00000005 00012 PortA equ 0x05 ; PortA RAM address
 00013
0000 00014 org 0h ; startup address = 0000
 00015
0000 3000 00016 start movlw TurnOnLed ; simple code
0001 0085 00017 movwf PortA
0002 2800 00018 goto start ; do this loop forever
 00019
 00020
 00021 end

MPASM 02.30 Released FIRST.ASM 12-31-1999 17:26:38
PAGE 2
mICro’s Simple Program

SYMBOL TABLE
LABEL VALUE

PortA 00000005
TurnOnLed 00000000
__16F84 00000001
start 00000000

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXX------------- ---------------- ---------------- --------------
--

All other memory blocks unused.

Program Memory Words Used: 3
Program Memory Words Free: 1021

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed

My First PIC Projects - Page 25

After successful assembly, this is what the generated HEX file looks like.

:060000000030850000281D
:00000001FF

This has all the information that a programming device needs to write your
program code to a chip. The default HEX file generated by MPASM is a style
called INHX8M, and this is how it is dissected.

:BBAAAATTLLHH....LLHHCC

BB This is a 2 digit value of the number of bytes on the line. 16 MAX

AAAA The starting address of this line of data.

TT A record type. Normally is 00, but will be 01 on the last line.

LLHH A data word presented as low byte high byte format.

CC The checksum value of this line of data.

:060000000030850000281D

:06 means 6 bytes of data on the line.
Our new code was 3 WORDS long which = 6 BYTES.

:060000000030850000281D

0000 means the bytes on this line are programmed starting from ROM address 0

:060000000030850000281D

00 means record type, but not on last line

:060000000030850000281D

00 30 85 00 00 28 are the 6 data bytes in low byte/ high byte format.
If you swap the bytes around and merge them into 3 words, you get

3000 0085 2800

This is the same as our code data.

My First PIC Projects - Page 26

:060000000030850000281D

1D is the checksum for all the data listed on this line. It is sometimes used by a
programmer to make sure the data on each HEX code line has not been
corrupted.

:00000001FF

The last HEX line has 0 bytes listed and 01 in the record type which means it is
the last line of the file.

Using a text assembler

If you haven’t installed MPLAB on your computer yet, please do so now. It is
located in a separate directory on the MICRO’s CD. Wait for the auto start when
you insert the CD into the drive and click on ‘Install MPLAB’ when the intro
screen is shown. When this program is installed you will have access to the
MPLAB Integrated Development Environment by Microchip, and also makes
MPASMWIN available for separate use.

For convenience, create a MPASMWIN shortcut for your desktop. Right click on
a blank part of the desktop screen and a pop up window will appear. Click on
‘New - Shortcut’ and a dialog box will appear. Click on the browse button to
display a directory dialog box. Double click on ‘Program Files - Mplab -
Mpasmwin.exe’. Now click on ‘Next’ and change Mpasmwin.exe just to
Mpasmwin in the edit box displayed. Click finish and a new Mpasmwin icon will
appear on the desktop.

Now we are going to do our first assembly using this program.

Double click on this new icon to start Mpasmwin. You will notice the screen
shows various options which are the assembler directives that were mentioned
earlier. At this stage you do not need to worry about them as we will use the
default ones shown.

Click on the Browse button to show a directory dialog box. Double click on the
‘c:\’ icon to bring the directory listing back to the C drive root directory. Now look
down this directory to find the softwareinstallation directory. The default name
will be ‘Bubble’. In the directory list on the left side you should be able to find a
file called first.asm. This is the source code for the file we have just been
looking at. Double click on this and it will be listed in Mpasmwin as the file it will
assemble. Now click on ‘Assemble’ and Mpasmwin will assemble this file.

My First PIC Projects - Page 27

If all went well, a new dialog box will be
displayed with a green progress bar saying that
assembly was successful. If all didn’t go well,
this bar will be red and you will have to find out
where the problem is in the source code before
continuing.

I’ll just bet that the assembly process failed and
that bar is a bright red colour, and the screen
tells us that there was 1 error encountered.
Guess what? Now we have to fix the problem.

First, click on the OK button to close Mpasmwin.
Start the program called ‘Notepad’ which is
located in ‘Start - Programs - Accessories -
NotePad’. Perhaps you can create a short cut for
this program as well. Now click on ‘File - Open’ and open the file called
first.asm which is located in the softwareinstallation directory.

See if you can see where the problem is.

If you can’t then don’t worry, Mpasmwin will tell us. Using Notepad, open up the
file called ‘first.err’, and this should be the contents.

Error[113] C:\...FIRST.ASM 16 : Symbol not previously defined (TurnOnLed)

It is telling us that a Symbol has not been previously defined, notably,
TurnOnLed. You can see that the error occurred on line number 16 of the
source file. To make things easier, use Notepad to open the file called
first.lst. This will look very similar to the listing shown previously. The only
difference between them is an error listed.

Error[113] : Symbol not previously defined (TurnOnLed)
0000 3000 00016 start movlw TurnOnLed ; simple code

The offending line is the one following the error message. Now that you can
actually see the problem, use Notepad to reopen the source file first.asm.

Now this seems crazy. We have defined TurnOnLed and we have used it in a
way that should make sense to the assembler.

Look a little closer and you may see the problem.

My First PIC Projects - Page 28

Here are the two lines that define and use the label.

TurnonLed equ 0x00 ; value to turn on LED with RA4

start movlw TurnOnLed ; simple code

Can you spot the problem yet?

Is TurnonLed the same as TurnOnLed?

No it isn’t, because TurnonLed has a lowercase ‘o’ and TurnOnLed has an
uppercase ‘O’. This makes a big difference to the assembler. Start Mpasmwin
again and you will notice a ‘Case Sensitive’ checkbox which is checked. This
means the assembler treats ‘o’ as a different character to ‘O’. You can decide if
you want case sensitivity or not when you write your programs.

You might think that the offending line should be the one that defined
TurnonLed, but this is incorrect. If you look at the listing file again, you will see
that the assembler has TurnonLed listed in the symbol table.

TurnonLed 00000000

Then when it got to the line with TurnOnLed, it could not find this label in the
symbol table, so it told us of the error at this point.

Use NotePad to open first.asm again and change the TurnonLed symbol to
TurnOnLed and save the file.

TurnOnLed equ 0x00 ; value to turn on LED with RA4

Start Mpasmwin again and first.asm should still be listed for assembly. Click
on ‘Assemble’ and this time you should have a green bar highlighted showing
success.

There are lots of different errors that may appear from time to time, and part of
the art of programming is developing some expertise in finding and fixing them.

Sometimes the assembler will not generate an error, but the code still doesn’t do
what we wanted. This means that we made an error with the way we wrote the
code and at times this can be very hard to find. Good documentation can ease
the pain so make sure you have enough listed to make you understand your
code as much as possible.

My First PIC Projects - Page 29

Use Notepad to open the file called first.hex which has been created in the
software directory by Mpasmwin. It should match up with this which will be the
same as the HEX listing that was shown previously.

:060000000030850000281D
:00000001FF

OK, OK, I know. I said we will be creating a LED flasher as our first program, but
if you think you have got a good grasp on what has been said up to this point,
then please feel free to move on. If you are not sure then it is best to go back
and have another look.

The Flowchart

The flowchart is another part of the planning stage for our projects and they are
very good for documenting larger programs as they enable us to see a pictorial
representation of the flow of our programs. To create a flow chart, you just need
to figure out what your program will do. If it is a large program, don’t try to cram
everything into a huge flow chart. Break things down into simpler tasks.

You might think that the previous program will turn on the LED if we programmed
a PIC and connected a clock source and applied power. Unfortunately you would
be mistaken. The LED will not come on at all.

The reason is because we have not told the PIC to make Port A pin RA4 work as
an output. If you look at the 16F84 data sheet, you will discover that Port pins
are set as inputs as a default setting, so there are no means yet to drive the
LED.

If you think about it, this should be our first course of action - to set the port pins
appropriately so that we can get control of external devices connected to the PIC
as quickly as possible after we turn the power on.

After we have done that, our next task is to make the LED turn on and off. Do we
make the LED flash fast, medium or slow? These are things you have to decide
on. Lets say we will make it flash every half second, which is 500 milli seconds,
or 500mS. The LED will be on for 500mS then off for 500mS.

Somehow we need to make Port A pin RA4 Logic 1 for 500ms and then Logic 0
for 500mS. The 500mS is called a ‘DELAY’ and this must be used each time the
Logic state of RA4 is changed.

My First PIC Projects - Page 30

To keep the LED flashing continuously we need to create a ‘LOOP’ in our code
otherwise the LED would flash just once and stop.

This then will be the basis for our flowchart.

Flowcharts are easy to create. They are usually just text
surrounded by boxes, diamonds and circles which are
connected by lines with arrows showing the direction of
program flow. Here is the flow chart for the LED flash
program. As you can see it is quite simple and shows in
a pictorial fashion what we mentioned on the previous
page.

They usually begin with a START statement inside a
circle. If you follow the connected line downwards in the
direction of the arrow the next box tells us to set Port pin
RA4 as an output. Next comes the box to turn the LED
on followed by a 500mS delay. Then we turn the LED off
followed by another 500mS delay. After that, the line
LOOPS back to turn the LED on again and this will
continue while power is applied to the chip.

When you look at the program with a flowchart it is quite easy to follow what is
going on. You can write whatever you like in these boxes, but just make sure you
understand what is going on when it is finished. Create them in pencil to start
with because you will probably change things a quite bit while you develop your
projects. Now we are ready to begin writing the flash program. We can use most
of what we have seen already to start with.

 Title "mICro’s Flash Program"

 list p=16f84 ; processor type
TurnOnLed equ 0x00 ; value to turn on LED with RA4
PortA equ 0x05 ; PortA RAM address
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

start movlw TurnOnLed ; simple code
 movwf PortA
 goto start ; do this loop forever

 end

My First PIC Projects - Page 31

All that’s been changed so far is the Title. The first function block in the flow
chart tells us to setup pin RA4 as an output. This is going to require 3 lines of
code to do because we need to set a special RAM location that requires a
programming trick to access. This is common to most PICs and is called
selecting a RAM Page.

RAM addressing can get a little bit complicated inside the PIC, but once you
know what is going on it is easy to understand. This topic is covered in detail in
the MicroPost tutorial program.

We will look at this briefly here. Remember the MOVWF instruction and how it
has 7 bits available in the instruction that specifies a RAM address.

MOVWF = 00 0000 1fff ffff

If you do the Binary math with 7 bits you will see that the maximum number that
can be represented is 127 decimal. (111 1111 or 7Fh) This means that the
MOVWF instruction can only move data to RAM addresses between 0 and 127.

The register that controls how we make the Port pins behave as an Input or an
Output is called the TRIS register. There are 2 of these in the 16F84, one for
Port A and is called TRISA, and another for Port B and is called TRISB.

The RAM address for these registers are 133dec and 134dec which is 85h and
86h respectively. So how can we use the MOVWF instruction to move data into
the TRISA register to set pin RA4 as an output instead of being the default input
when we only have 7 bits available in the instruction?

The answer lies in what is called a ‘RAM Page Select Bit’. There are 2 RAM
pages available in the 16F84. Page 0 has RAM addresses ranging from 0 - 127,
and Page 1 has RAM addresses ranging from 128 - 255. Addresses 128 - 255
need 8 bits of information which is one more than can be used with the MOVWF
instruction. So to use this instruction with the TRISA register we need to get the
8th bit from somewhere else.

This bit comes from the STATUS register, which is at RAM address 3, and is
called the RP0 bit. Each time you use the MOVWF instruction, RP0 is used as
the 8th address bit. If this bit is set to Logic 0 then the MOVWF instruction can
access RAM addresses from 0 - 127. If this bit is set to Logic 1 then the MOVWF
instruction can access RAM addresses from 128 - 255.

My First PIC Projects - Page 32

RP0 is bit number 5 in the STATUS register.

Notice how the bit numbers start from 0 on the right side and finish with 7 on the
left side.

If we want to set the RP0 bit to logic 1 so that we can send data to the TRISA
register, we can use this instruction.

 BSF 03h,05h ; set RP0 for RAM page 1

What looks easier to read, the instruction or the comment?

Either you say!

What is BSF?

BSF means Bit Set File, or more simply, set a particular bit in a RAM register to
Logic 1. The instruction as written means to set a bit number 5 in RAM register
3.

That looks a terrible way to write instructions, so what we want to do is to rewrite
this instruction so that it makes more sense to us.

As you are now aware, we can do this by defining new labels. It’s just a simple
matter to add these new label definitions to our existing program.

My First PIC Projects - Page 33

 Title "mICro’s Flash Program"

 list p=16f84 ; processor type
TurnOnLed equ 0x00 ; value to turn on LED with RA4
PortA equ 0x05 ; PortA RAM address
Status equ 0x03 ; Status RAM address
RP0 equ 0x05 ; Status RP0 bit = bit 5
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

start movlw TurnOnLed ; simple code
 movwf PortA
 goto start ; do this loop forever

 end

Now that we have done that, we can use the labels in our program to set the
Status RP0 bit so that we can access TRISA.

So instead of writing

 bsf 03h,05h ; set RP0 for RAM page 1

we can now write

 bsf Status,RP0 ; set RP0 for RAM page 1

The opposite to this instruction is BCF which means to Bit Clear File, or more
simply, clear a particular bit in a RAM register to Logic 0. After we set the TRIS
register we need to set RP0 to Logic 0 so that we can access the PortA register
which, if you remember, is RAM address 5 and therefore is in RAM Page 0.

We can write that instruction as

 bcf Status,RP0 ; set RP0 for RAM page 0

In between these two instructions we need to set the TRISA register so that pin
RA4 becomes an output. Do you remember how each bit in the PortA and PortB
registers corresponds to the Port pins? Bit 0 in PortA = RA0, Bit 1 = RA1 etc.

The same is for the TRIS registers. Bit 0 in TRISA controls whether RA0 is an
input or an output, Bit 1 for RA1, Bit 2 for RA2 etc.

My First PIC Projects - Page 34

To make any pin an output we clear the corresponding TRIS bit to Logic 0, and
to set any pin as an input we set the corresponding TRIS bit to Logic 1.

This is easy to remember.

1 = Input
0 = Output

The default state of the port pins on power up are inputs, which means all the
bits in both TRIS registers are set to Logic 1.

Now, to make Port pin RA4 be an output we need to set TRISA bit 4 to Logic 0.

These are the 3 instructions to do this task.

 bsf Status,RP0 ; set RP0 for RAM page 1
 bcf TrisA,RA4 ; set RA4 = output
 bcf Status,RP0 ; set RP0 for RAM page 0

Before this will work with the assembler, we need to add the Labels TRISA and
RA4 to our source code.

 Title "mICro’s Flash Program"

 list p=16f84 ; processor type
TurnOnLed equ 0x00 ; value to turn on LED with RA4
PortA equ 0x05 ; PortA RAM address
TrisA equ 0x85 ; TRISA RAM address
RA4 equ 0x04 ; PortA RA4 = bit 4
Status equ 0x03 ; Status RAM address
RP0 equ 0x05 ; Status RP0 bit = bit 5
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 bsf Status,RP0 ; RP0 set for RAM page 1
 bcf TrisA,RA4 ; set RA4 = output
 bcf Status,RP0 ; RP0 set for RAM page 0

start movlw TurnOnLed ; turn on LED on RA4
 movwf PortA
 goto start ; do this loop forever

 end

My First PIC Projects - Page 35

We have also added the code to make RA4 an output before the program does
anything else. That way we gain control of the Port pins very quickly.

The next thing to do according to our flowchart is to turn the LED on. This is
already in the code, so the next thing to do is create some code to make a
500mS delay.

start movlw TurnOnLed ; turn on LED on RA4
 movwf PortA

To make a simple delay, we need to make the processor waste the time required
for the delay and an easy way to do this is to subtract 1 from a RAM register until
it equals 0. It takes the PIC a certain amount of time to do this, but the trick is to
find out how much time.

The processor used in the MiniPro PCB runs with a clock speed of 4MHz. That
is 4 million cycles per second.

The PIC needs 4 of these cycles to process most instructions, which means they
execute at a rate of 1 million per second. These are called Instruction Cycles.

This means that 1 instruction cycle = 4 clock cycles.

Some instructions, like GOTO and CALL, use 2 instruction cycles to complete.

For our purposes, all we have to do is figure out how many instruction cycles we
need to waste to create a 500mS delay. Each basic instruction cycle with a clock
speed of 4MHz takes 1 micro second to execute, so we need 500,000 of them to
make our delay.

Let’s create a small loop that simply decrements a RAM register until it equals 0.

 clrf DelayL ; clear DelayL to 0
WaitHere decfsz DelayL,f ; subtract 1 from DelayL
 goto WaitHere ; if not 0, goto WaitHere

My First PIC Projects - Page 36

Inside the 16F84, there are 68 general purpose RAM registers that we can use
for whatever we need. The first of these registers starts at RAM address 12dec,
or 0x0C. We need to use one of these to create the delay code loop above and
we have called it DelayL. We can define the label like this so that we can use it
in our program. This means the newly define RAM location is at RAM address 20
hex, or 32 decimal.

DelayL equ 0x20 ; delay register LOW byte

The CLRF DelayL instruction makes the contents of RAM register DelayL
equal zero, and gives us a known value to start from.

The DECFSZ DelayL,f instruction means to decrement the contents of
DelayL and if it now equals 0 then skip over the next instruction.

Notice the ,f that follows DelayL. This is called a Destination Designator. If the
letter f is used, then the result of the operation is placed back into the register
specified in the instruction. If the letter w is used then the result of the operation
is placed into the W register.

Sequence of events for DECFSZ DelayL,f

W Register = 0xA0
DelayL = 0
Value is read into the Arithmetic Logic Unit (ALU) = 0
Value in ALU is then decremented = 0xFF
DelayL = 0xFF
W Register = 0xA0

Sequence of events for DECFSZ DelayL,w

W Register = 0xA0
DelayL = 0
Value is read into the Arithmetic Logic Unit (ALU) = 0
Value in ALU is then decremented = 0xFF
DelayL = 0
W Register = 0xFF

There are quite a few instructions that use ,f or ,w after the instruction to
specify where the result goes.

The assembler doesn’t care if you omit to use ,f after an instruction, as it will
assume that you want the result placed back into the specified register.

My First PIC Projects - Page 37

The assembler will generate a warning message like this, but you can ignore it
as long as you know your code is correct.

Message[305]: Using default destination of 1 (file).

Notice the 1 value. As with all labels used with an assembler, they must have a
value assigned to them. f and w are labels as well, but we don’t need to worry
about them as they are automatically assigned a value by the assembler.

f assembler assigns value 1
w assembler assigns value 0

So how does this value fit inside an instruction.

Remember the MOVWF instruction?

MOVWF = 00 0000 1fff ffff

Can you see the bit that equals 1? This is the destination bit which forms part of
this instruction. The processor checks this bit during execution and if it is 1,
sends the result back the specified RAM address. MOVWF always sends the
result back to the specified RAM address, that is why this bit is always 1.

Instructions like this next one are a little different. DelayL = RAM address 0Ch.

DECFSZ DelayL,w

The binary code for this instruction is 00 1011 0000 1100, and the ‘d’ bit = 0.

DECFSZ DelayL,f or DECFSZ DelayL

The binary code for this instruction is 00 1011 1000 1100, and the ‘d’ bit = 1.

In future we will not use ,f when we want the result of an instruction placed back
into the specified RAM address. Now we can move back to the code listing.

When this code block executes, DelayL will be set to 0. Then it will be
decremented by one and it will have a value of 0xFF. This new value is not
equal to 0, so the next code line is NOT skipped. Therefore the instruction Goto
WaitHere is executed and the processor loops back to the code line with the
label WaitHere. DelayL is decremented again, and eventually it will equal 0
after this code has completed 256 loops. When this happens, the instruction
goto WaitHere will be skipped thus breaking the loop and ending the delay.

My First PIC Projects - Page 38

The DECFSZ instruction takes one instruction cycle to complete unless the result
of the decrement equals 0. It will then take two instruction cycles. A GOTO
instruction always takes two instruction cycles to complete. If you do the math, it
will take around 768 instruction cycles to complete this routine. This is quite a bit
shorter than the 500,000 we need and if we were to use the delay routine as it is,
the LED would flash on and off so fast, we would not see it.

If you would like to know more about instruction timing there are animated
tutorials available in the program called MicroPrac.

What we need to do is use this same delay routine enough times so that 500mS
is wasted and we can accomplish this by using what is called a ‘Nested Loop’.
These are just code loops within code loops and to create one we use another
RAM register to control how many times the existing delay code executes. If this
is still not enough for the delay we need, then we will have to use more nested
loops and more RAM registers.

In fact, for a delay of 500mS we need to use 3 RAM registers when the chip is
executing instructions at a rate of 1 million per second.

Let’s define these registers so we can use them.

DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte

Now we can construct a delay routine using these RAM locations with 3 nested
loops.

 clrf DelayL ; clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
WaitHere decfsz DelayL ; subtract 1 from DelayL
 goto WaitHere ; if not 0, goto WaitHere
 decfsz DelayM ; subtract 1 from DelayM
 goto WaitHere ; if not 0, goto WaitHere
 decfsz DelayH ; subtract 1 from DelayH
 goto WaitHere ; if not 0, goto WaitHere

My First PIC Projects - Page 39

In this routine DelayL will get decremented until it
equals 0 as mentioned before. Then DelayM gets
decremented, because the first goto WaitHere
instruction gets skipped. DelayM will now equal 0xFF,
so the processor executes the second goto
WaitHere and starts decrementing DelayL again.
This double loop will continue until DelayM equals 0
and then the second goto WaitHere instruction is
skipped. DelayH is then decremented and it will equal
2. The third goto WaitHere will execute because
DelayH does not equal 0 yet. This triple loop will
continue until DelayH equals 0 which causes the third
goto WaitHere instruction to be skipped and then
the 500mS delay is complete. This routine does not
cause an exact delay of 500mS but it is close enough
for our purposes.

The next task is to place this delay routine into the
code we have so far.

 Title "mICro’s Flash Program"

 list p=16f84 ; processor type

TurnOnLed equ 0x00 ; value to turn on LED with RA4
TurnOffLed equ 0x10 ; value to turn off LED with RA4
PortA equ 0x05 ; PortA RAM address
TrisA equ 0x85 ; TRISA RAM address
RA4 equ 0x10 ; PortA RA4 = bit 4
Status equ 0x03 ; Status RAM address
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 bcf TrisA,RA04 ; set RA4 = output
 bcf Status,RP0 ; set RP0 for RAM page 0

start movlw TurnOnLed ; turn on LED on RA4
 movwf PortA

 clrf DelayL ; clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3

My First PIC Projects - Page 40

 movwf DelayH
Wait1 decfsz DelayL ; subtract 1 from DelayL
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1

 movlw TurnOffLed ; turn off LED on RA4
 movwf PortA ; turn LED off

 clrf DelayL ; clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
Wait2 decfsz DelayL ; subtract 1 from DelayL
 goto Wait2 ; if not 0, goto Wait2
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait2 ; if not 0, goto Wait2
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait2 ; if not 0, goto Wait2

 goto start ; do this loop forever

 end

Our code now matches the flow chart we created for this program. A label that
defines TurnOffLed has been added, and notice how the second 500mS delay
has a Wait2 label. Remember we can’t have 2 labels defined with the same
name.

Do you notice the value that was used to define TurnOffLed?

TurnOffLed equ 0x10 ; value to turn off LED with RA4

Pin RA4 is pin 4, but TurnOffLed is defined as 10h or 16 decimal. How can this
be?

Remember RA4 is pin number 4 from Port A, which can also be said as being bit
4. When bit 4 is represented in Binary, it becomes 10000, which is 0x10.

Do you also notice something about the 2 delay routines?

Apart from a different Label name, they are exactly the same code, and they
both do exactly the same thing. Wouldn’t it be nice to use only one of these
delay routines instead of two. It would save us some typing and it would also
conserve memory space inside the PIC. These devices have a limited amount of
memory, so it is in our best interests to write our code as compact as possible.
That way we can do more with the resources we have available.

My First PIC Projects - Page 41

We can change these two routines into a one by turning them into a single
SUBROUTINE. A subroutine is a piece of code that is used many times by
different parts of your program. We create these because it becomes wasteful to
have the same code copied many times as you need it.

To use a subroutine, we use the instruction CALL followed by a label name. This
tells the processor to remember where it is now and jump to the part of memory
where the subroutine is located. After the subroutine is completed we use the
RETURN instruction to tell the processor to jump back and continue on from
where it was before it jumped to the subroutine. You can learn how the PIC does
this by looking at the MicroPost tutorial software.

This is how we can turn the delay code into a subroutine. Don’t forget to add the
/R in the comment on the first code line, which will be explained later.

Delay500 clrf DelayL ; /R clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
Wait1 decfsz DelayL ; subtract 1 from DelayL
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay

As you can see the subroutine is exactly the same as the original code. The only
difference is a Label called Delay500 which defines the name of the subroutine,
and the RETURN instruction placed at the end. Now each time we need to use a
500mS delay anywhere in our code all we have to do is use this code line.

 call Delay500 ; execute a 500mS delay

The delay subroutine will save us 9 code lines each new time we need a delay.
We can also use the BSF and BCF instructions to turn the LED on and off which
will shrink the code by a further 2 lines. We can also change the RA4 label to
LED so it is even easier to read.

start movlw TurnOnLed ; turn on LED on RA4
 movwf PortA

start bcf PortA,LED ; turn on LED on RA4

If you can find ways to make your code more compact you may find that it
operates much more efficiently and you can fit more code into the chip.

My First PIC Projects - Page 42

This is the final version of our LED flash code. We have dispensed with the
TurnOnLed and TurnOffLed Labels and added BSF and BCF instructions.

 Title "mICro’s Flash Program"

 list p=16f84 ; processor type
;
; The purpose of this program is to make a LED turn on and off
; The LED is connected to PortA pin RA0
; The flash rate is 500mS
;
PortA equ 0x05 ; PortA RAM address
LED equ 0x04 ; PortA RA4 = bit 4 for LED
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

start bcf PortA,LED ; turn on LED on RA4
 call Delay500 ; execute a 500mS delay

 bsf PortA,LED ; turn off LED on RA4
 call Delay500 ; execute a 500mS delay

 goto start ; do this loop forever
;
; --------------------------------
; SUBROUTINE: waste time for 500mS
; --------------------------------
;
Delay500 clrf DelayL ; /R clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
Wait1 decfsz DelayL ; subtract 1 from DelayL
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay

 end

My First PIC Projects - Page 43

You may have noticed that the program made both Port A and Port B pins set as
outputs. If the pins are left as inputs with nothing connected to them they will
float and may cause damage to the chip.

Floating inputs can also cause the chip to run erratically. By making them
outputs, and because we have not written a value to PortA or PortB, the pins will
be set at a random logic 0 or logic 1 level when power is applied to the chip.
There is nothing connected to any pin other than RA4 with this project so we will
do no harm.

This program is available in the software directory and is called flash.asm.
You can run Mpasmwin again and assemble this code if you like. Then you can
use Notepad to see the listing and HEX files produced.

There are many more things to learn when using assemblers, such as Macro’s,
defining code blocks, constants and others, which are explained in the help file
for Mpasmwin or in MPLAB.

It is very hard to remember everything all at once, so just take your time and
learn these things as you need them. Have a brief look through the help files so
that you have an idea of what to expect and to get a basic knowledge of it’s
workings, directives and error messages.

MicroPlan Assembler

The MicroPlan beginners assembler can let you write programs just by using the
mouse. There is no need to type text other than comments and labels, and you
do not need to assemble the code after you finish creating it. The code is
assembled as you go.

To start MicroPlan you can click on ‘START - Programs - mICros - MicroPlan’.
You may even like to create a short cut.

To make code entry as easy as possible a small prompt window is included
under the operand panel on the right side of the screen. This tells you what part
of the code line the assembler is expecting you to enter. You will also notice that
some text headings are Red in colour. These either indicate where you can
select the next piece of code data from or which data panel that piece of code
will go to when you enter it.

All of the basic Labels that are used with a PIC 16F84 are already defined when
you start MicroPlan so you do not need to create these yourself.

My First PIC Projects - Page 44

However, you do need to create new Labels for new RAM locations and ROM
addresses. This is easy to do and will be explained shortly.

The easiest way to see how this program works is to start writing code, so let’s
begin with the program that we wrote with a text editor.

Press the New button to clear the code window.

If you remember, this is the first code line from the LED flash program.

 bsf Status,RP0 ; set RP0 for RAM page 1

The prompt window will have the message Expecting Label or Command. This
means that the assembler will only accept a Label or an Instruction at this point.

There is no address label on this line of code, so we need to enter the BSF
instruction first. You can see that each instruction has it’s own button on screen,
so to add a BSF instruction all you need to do is click on the button called BSF.

The BSF instruction now appears in the Command Panel.

Notice the Code Construction Panel now has the binary value of the BSF
instruction inserted into the code word, 01 01bb bfff ffff. The ‘b’ values
represent the bit that will be set to Logic 1 (0 - 7), and the ‘f’ values represent
the RAM register that will be used. The assembler does not know these values
yet, because you have not chosen them.

The prompt window will have the message ‘Expecting RAM Address’ and the
RAM List heading is now a red colour indicating that we can use a label from
here. Our instruction is bsf Status,RP0, so just click on the STATUS label
from this list.

The RAM address label Status now appears in the Operand Panel, and the
fff ffff in the Code Construction Panel has been replaced with the binary
value of the Status address which is 3. It now reads 01 01bb b000 0011.
but the assembler still does not know which bit value to set as yet.

The prompt window will have the message ‘Expecting Constant’ and the
CONSTANTS heading is now a red colour indicating that we can use a label
from this list. Notice that the keypad digits 0 - 7 are also highlighted in red,
indicating that we can also choose the bit value from here. We know that RP0 is
bit 5 in the Status register, so we can just click on digit ‘5’ if we wish.

My First PIC Projects - Page 45

It would be nicer to use RP0, so look down the Constants List and click on the
RP0 label. Notice that it has the value 5 defined next to it.

The prompt window will have the message ‘Expecting OK or Comment’ and the
binary number in the Code Construction panel is now complete. The ‘bbb’ has
been replaced with 101 and the final instruction value is 01 0110 1000 0011.

You can now enter the comment set RP0 for RAM page 1 into the comment
box in the centre left of screen. You do not need to include the semi colon (;).

Now press OK and the code line will be inserted into the main listing.

The assembler is now waiting for you to add some more lines.

This is the next line of code.

 clrf TrisA ; set all PortA = outputs

To enter it click on CLRF and then the TrisA Label in the RAM LIST. After that
enter the comment set all PortA = outputs and press OK.

Now you can enter this code line.

 clrf TrisB ; set all PortB = outputs

To enter it click on CLRF and then the TrisB Label in the RAM LIST. After that
enter the comment set all PortB = outputs and press OK. Now you
should be able to enter this line.

 bcf Status,RP0 ; set RP0 for RAM page 0

The next code line has an address label followed by an instruction.

start bcf PortA,LED ; turn on LED on RA4

At this stage we have not defined the LED Label, so we will do that now.

Scroll down the CONSTANTS list until you find the next empty location. Click on
the small ‘E’ button just above this list and then click on the empty constant
location. A dialog box will open allowing you to define the name and value of this
Label. Type 4 into the Value box and type LED into the Label box, then click OK.
The new label will be entered into the list.

Now you are ready to enter the code line.

My First PIC Projects - Page 46

To enter the code line we need to use an address target label called start first
off, so click on the START label in the Jump Table and it will then appear in the
Label Panel. Notice that the Jump Table heading has now turned a black colour
meaning we can no longer use these labels anywhere else in this line of code.

The prompt window will have the message Expecting Command.

To enter it click on BCF and then the PortA Label in the RAM LIST. Then click
on the newly created LED label in the CONSTANTS list and this will be entered
into the code word. Add the comment turn on LED on RA4, and then press
OK.

This is the next code line, but it has a label called Delay500 which has not
been defined yet.

 call Delay500 ; execute a 500mS delay

This type of label is for a GOTO or CALL address destination so it must be
entered into the JUMP TABLE list. To do that, click on the small ‘E’ button
above this list, click on the next free location in this list, and enter the label name
Delay500 into the Label box that appears, then click OK. The new label will
appear in the list.

Now click on the CALL button followed by the new Delay500 label, then enter
the comment execute a 500mS delay, and then click OK.

What do you notice about the HEX code that was generated? It should read
20XX. Notice that the Delay500 label in the Jump Table does not have an
address associated with it yet. The assembler cannot put a ROM address value
into the code word yet because there are none listed anywhere in the code, so
the assembler just leaves it as XX for now.

You should now be able to enter these next lines.

 bcf PortA,LED ; turn on LED on RA4
 call Delay500 ; execute a 500mS delay
 goto start ; do this loop forever

After you have finished, the code window should look like this.

My First PIC Projects - Page 47

If the window does not look like this your code has been entered incorrectly and
you will have to start again.

The Labels called DelayL, DelayM, and DelayH have not been defined yet, so
click on the small ‘E’ button above the RAM LIST window, then click on the free
location at address 20h. Enter DelayL into the edit box that appears and click
OK. Do the same for the other two registers for RAM addresses 21h and 22h,
which will be called DelayM and DelayH.

The next code line is the start of the Delay Subroutine.

Delay500 clrf DelayL ; /R clear DelayL to 0

Click on the Delay500 Label in the JUMP LIST, then click on CLRF, and then
the newly created DelayL label. After this, enter the comment /R clear
DelayL to 0 then click on OK. Notice the /R written in the comment. Please
add this as well.

After you do this, you should notice that the 20XX values have been replaced
with 2009 values. That is because the assembler now knows the ROM address
of the label called Delay500. This is the value 0009 and it has also appeared
next to the Delay500 label in the JUMP LIST. Have a look at the ROM address
number in the code list where the Delay500 subroutine label appears. It too has
a value of 0009. Each line of code listed in MicroPlan will occupy a ROM
address inside the PIC chip when it is finally programmed.

You should now be able to enter these code lines.

 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH

My First PIC Projects - Page 48

With this next code line you should know how to create the ROM address label
Wait1, and then add the instruction.

Wait1 decfsz DelayL ; subtract 1 from DelayL

After you click on the label DelayL in the RAM List, you will notice that the To F
and To W buttons will be highlighted in red.

The prompt window will have the message Expecting Destination.

Remember that a destination must be specified for this type of instruction. Click
on To F because you want the result to go back to the RAM register specified. If
you choose To W, DelayL will not decrement because the result of the
instruction will always go to the W register.

Enter the comment, subtract 1 from DelayL, and click OK to finish this
code line.

You should now be able to enter these next code lines which will complete the
program.

 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay

You do not need an end assembler directive with MicroPlan, so you can now
save this file with any name you like. It is already available in the software
directory called pflash.bls.

After you save it, and if there are no ROM address labels missing, MicroPlan will
generate all the necessary files to program a PIC chip from this code, including a
source file. It doesn’t produce an error file, because you cannot make a syntax
mistake when you enter your code.

Please bear in mind that MicroPlan is a beginners assembler only. It does have
all the functionality to generate real PIC code, but if you are going to develop
large programs, you will find that a text based assembler is a much better option.
Please use MicroPlan to get yourself familiar with PIC code by creating small
programs, and then when you become more confident with writing assembler,
move into Mpasmwin or MPLAB. These programs will allow you to get much
more productivity out of your time.

My First PIC Projects - Page 49

Why do you set Port A pin RA4 to Logic 0 to turn the LED on, and Logic 1 to turn
it off?

Pin RA4 is an open collector driver when it is set to an output. These two
drawings explain how it works.

You can see how the pin can only connect external devices to ground,

More information about port pins can be found in the MicroPort tutorial.

If you would like to know more about using MicroPlan, see the help file for this
program which is activated from a help button on the main screen.

The Simulator

Now that you have your first program completed, should you program a chip and
hope that it will work, or should you try to find this out before hand?

It doesn’t matter much if you make a mistake with a 16F84, because you can
reprogram the chip, but with some PICs, you can’t do this. In this case it pays to
be sure the code works properly, otherwise you may sacrifice a new chip. These
particular chips are One Time Programmable (OTP), and if you program them
incorrectly, you will more than likely have to throw them away.

Another programming problem that arises, is that the software appears to work
OK for some of the time and then it fails. This type of problem can be very
difficult to find, especially when large amounts of code are used for a program.

A way around this problem is to try your program out in a SIMULATOR.

These programs allow you to test your code by using a PC to simulate a PIC.
Most times they are very helpful and there are a few different types about.

My First PIC Projects - Page 50

Another benefit of these programs is that they give you another perspective on
how your program works.

For example, you can watch RAM registers and how the code affects the values
stored in them You can see how long delay routines take to complete in real
time. You can follow the flow of your code and make sure everything works
exactly how it is supposed to. You can change the values in registers, and even
generate logic levels on the port pins. The best part is, you don’t even need to
program or use a PIC.

However, there are some drawbacks to using a simulator. Most simulators work
at slower speeds than a real PIC processor, so they can take a lot of time to
simulate code, especially delays. Sometimes you need to modify your code to
get around a delay problem or similar, but this can change the way the software
works to the point where it is unusable. Modifying code this way may also fool
you into thinking it works, but you may find that in the real world, it doesn’t.

The best way to test code in a simulator is break the code down into small
routines and try make sure they all work before you put them together to build a
complete program.

The LED flash routine that we have created so far is reasonably simple, but what
if your code has to control a serial port, as well as drive an LCD display, control
stepper motors and read limit switches and a keypad all at the same time?
That’s quite a task for a PIC and would result in some large and complicated
code. The trick is to always break these large problems down into little pieces.

We saw the flowchart earlier which gives us the ability to see our programs
pictorially. The blocks that make up the chart may define other flow charts, which
in turn may define others as well. A block may need only one code line to create
it’s functionality, but it may also have many. It is up to you the programmer to
create the flowcharts, documentation and code so that you or somebody else
can totally understand everything that is going on.

To help debug these smaller blocks of code you can use a simulator. After these
are known to work, you can begin using these to build up larger programs and
you can still use the simulator to test these out. Sometimes a simulator will not
show you the whole picture while it is working, especially if you have lots of
subroutines and decision making used in the code, so a flowchart is also good
here, because most times you can follow it through while monitoring the
simulator’s progress.

This software package has three types of simulator included with the software.
One is called MicroSim, another is called MicroPlay, and another which has
been designed by Microchip is called MPLAB.

My First PIC Projects - Page 51

MicroSim is a beginners simulator and graphically shows the programmer how
the code executes inside the PIC 16F84 chip. It accepts code from the list files
that are generated when you use a text based assembler like Mpasmwin or from
MicroPlan.

MicroPlay works from the list files generated by an assembler as well, but it also
allows you to draw a variety of electronic circuits to test your code on. That way
you can get an idea of how your program will perform on real life devices.

MPLAB is quite a large PIC development program and with it you can design,
develop, test and finally program your PIC chip all within the one user interface.
As such, it is out of the scope of this beginners tutorial, so please consult the
help files associated with this program when you decide to use it.

Start the MicroSim simulator and let’s see how it works.

The main screen graphically shows the internal structure of the PIC 16F84 chip
and you can see most of the special RAM registers which let you control how the
chip works.

The box that says Code space vacant, is the place that displays your
instructions as they are executed. The PC box shows the current program
counter value and this is the ROM address that corresponds to the currently
executing instruction.

If you look around the screen, you will see that all of the values in the boxes are
in decimal, and you can change most these by double clicking inside the boxes.
This will display a dialog box that shows the current value of the particular RAM
address chosen. With this dialog box you can change the value in the RAM
location and it’s associated label and you can even change how the value is
displayed on screen. This may be Binary, Decimal or HEX.

There are three boxes associated with Port A and Port B. The top box in these
groups is the data that appears on the pin output latches. The middle box is the
data that the PIC reads when it is set as an input, and the lower box is the data
for the TRIS register.

Double click on the top PortA box, which is for the [out] data. Now click on the
Binary Radio Button in the dialog box that is displayed and click OK.

My First PIC Projects - Page 52

Now the data that is shown in the [in] and [out] data boxes is displayed in binary.
The bit at the extreme right of these values corresponds to Port A pin RA0, or
Port B pin RB0.

To view all of the RAM locations, double click on the [address] box in the center
of the screen just above the little RAM page book. This will display a complete
list of RAM registers. Notice that Port A is displayed in binary. You can also
double click on a RAM register value from this list to display the RAM data dialog
box again. You will notice that after RAM location 79 and before location 128,
each of the values equal zero. That is because the 68 general purpose RAM
register addresses which start at address 12, finish at address 79.

You will also see that the TRISA register is at RAM location 133 and should
have the value 31 stored in it. TRISB, the next register location, should have the
value 255. Double click on each of these registers and change the RADIX to
binary as this makes it easier to see the state of any pin. You should notice the
main screen values have also changed to binary. At this stage, these pins are
set to default input states and as you can see, each input pin is set to Logic 1 in
the TRIS register.

Double click on the TRIS A register again and change the binary value from
00011111 to 00011110. This will set Port A pin RA0 as an output.

What do you notice about bit 0 in the Port A [in] and [out] boxes? They should
both be the same. Double click on the Port A [out] box and change the Logic
state of bit 0. For example, if this bit equals 1, change it to 0 or vice versa. You
should notice that bit 0 is still the same in both the [in] and [out] boxes again.

The data acts this way for an output pin because the input circuit is also
connected to the pin inside the chip. When a pin is set as an output high, the
PIC also ‘sees’ this logic level when it reads the pin state. The same happens
when a pin is set as an output low. You should also notice that the pins set as
inputs may have different bit values in the [in] and [out] boxes. When a pin is set
as an input, and there is nothing connected to the pin, then there is also nothing
to set the pin state. In this condition, the pin is said to be FLOATING.

Down at the bottom left of the screen, you can see how the W register is
connected to the rest of the chip through the Arithmetic Logic Unit (ALU).

The ALU is also connected to the rest of the chip via an 8 bit data path and also
to the STATUS register by a direct connection. Certain bits change in the
STATUS register during program execution. For example if an instruction
decrements a value from a RAM register, then the ALU sends a signal to the
STATUS register to set or clear the Z bit, or Z FLAG, as it is more commonly
termed.

My First PIC Projects - Page 53

Each time most instructions execute, they can
have some effect on the Carry, Digit Carry and
Zero bits in this register.

Here is a STATUS - Z bit example.

Suppose a register with a label called Count has a value of 1 stored in it. If the
next instruction is DECF Count, then the value will be decremented by 1 and
the new value stored here will be 0. Because the result of that instruction was a
zero value, the Z flag in the STATUS register is set to Logic 1 by the ALU. If we
use the same DECF Count instruction again, then the new value stored in
Count will equal 0xFF. Because the result of this instruction is not zero this
time, the Z flag in the STATUS register is now set to Logic 0 by the ALU.

We can see this by using MicroSim’s Tutorial Mode.

Start this mode by clicking on the Display - Tutorials menu item. This
brings up a screen showing every instruction that the PIC can execute. Click on
DECF and a window appears with an explanation for this instruction. After
reading the text, click on the arrow button on the lower left of the screen. More
explanation text will be shown and finally a screen allowing you to see how the
instruction works inside the chip. There should be a small window available that
lets you enter a value for RAM location 12. Type in a value of 1 here, and then
click on the arrow button again. The screen will show the before and after values
of this RAM register for the DECF instruction. Keep clicking of the arrow button
to progress through the mini tutorial and you will be asked if you want the result
placed in the W register or back into RAM location 12. Do you remember the
Destination Bit that was mention earlier? This is an example of how it is used.
Leave the box UNCHECKED for now and click on the arrow button again.

You should now see the data in RAM register 12 taken to the ALU where it is
decremented by 1. The result is then placed back into RAM address 12. The
decrement result equals zero, so the Z flag in STATUS was set to Logic 1 by the
ALU.

Click on the arrow again and repeat the instruction. Don’t change the 0 value or
the destination bit. This time, the Z flag should be set to Logic 0 by the ALU
because the result of the instruction did not equal zero.

Now click on the arrow again and this time, change the Destination check box so
that the instruction result goes to the W register. Now keep repeating the
instruction. What do you notice about the value in RAM location 12? Did it
change at all?

My First PIC Projects - Page 54

Press EXIT to stop the DECF mini tutorial, and if you want to see how the other
instructions work, please try them out. After you have finished, click on EXIT to
return to the simulator.

Now we can get back to the LED flash program we wrote earlier and see how it
works in the simulator. If you have not assembled it at this stage please do so
now or you will not be able to load the code into the simulator.

Click on File - Open List. Now choose flash.lst from the files listed and
click OK.

The instruction bsf Status,RP0 should now be displayed which was the first
instruction you wrote in the LED flash source file. Notice it has the value 0000
next to it, and the PC box is displaying 0000. This is showing you that the
current program counter value is at ROM address 0000h, and the PIC 16F84
always starts executing instructions from here. Do you remember how we used
the ORG assembler directive to set the start of the program at ROM address 0h?
This was the reason why. If you change this value to something like ORG 10h, in
your source code and then re-assemble, the assembler will start building the
instruction code starting from ROM address 10h. If you try to run the resulting
program in a simulator, it will complain because there is now no instruction data
at ROM address 0h.

The simulator has some experimental circuits that you can connect to the port
pins and these are located in the Modules menu.

Click on Modules - PortA - RA4 OC.

When you do this, a circuit board will appear connected to the Port A pins. On it,
there is a LED and a resistor connected in series from 5 volts to the Open
Collector pin RA4. Notice that the LED at this stage is turned off. That is
because pin RA4 is still configured as an input. You can change the state of RA4
manually by double clicking on the Port A [TRIS] box and changing bit 4 to 0.
Now if the Port A [out] box has bit 4 set as Logic 0, then the LED will light. If this
bit equals Logic 1, then the LED will not light. Try changing this bit to Logic 0 to
turn on the LED by double clicking on the Port A [out] box.

We are now going to simulate the LED flash program.
These are the buttons that control the simulator.

At this stage we will use the STEP button which will
make the processor execute one line of code at a
time. When you first press it, the processor should
reset and then start the simulation.

My First PIC Projects - Page 55

When this happens the LED will turn off because the TRIS registers will be reset
so that all the pins are inputs. Make sure the SPEED bar is set close to the left
side as this is the slowest simulation speed. Now press the STEP button.

The bsf Status,RP0 instruction first causes the processor to get the value
stored in STATUS and then place it in the ALU.

Then the ALU sets bit 5 in this value, which if you recall, is the RP0 bit. The
result is then placed back into the STATUS register. After this happens, you
should see that the RAM page icon near the center of the screen is showing
RAM Page 1. Remember that we had to do this first to get access to the TRIS
register so that pin RA4 can be set as an output.

Press the STEP button again, and the instruction clrf TrisA will execute. If
bit 4 in the PortA [out] box is Logic 0, the LED will light, otherwise it will stay off.

Press STEP again and the next instruction sets all Port B pins to outputs. We
have set all the port pins to outputs to stop Floating unused inputs.

Double click on the STATUS box and change the radix to Binary. Press the
STEP button again and watch the STATUS RP0 bit change back to Logic 0
when the next instruction executes. The RAM Page icon will now change back to
RAM Page 0.

For clarity, make sure Port A [out] box is set for binary. Press the STEP button
again and pin RA4 will be set to Logic 0 by the next instruction. This will cause
the LED to come on if it was off previously, or there will be no change if it was
already on.

The reason that the LED may come on when the RA4 TRIS pin was set to an
output is because the RA4 pin output data was a random value at power on. To
gain better control of the port pins, you should set the port pin states to a known
value before changing them to outputs. You do this by writing a specific value to
PortA and PortB before writing to TRISA and TRISB. In this LED flash program,
it does not matter, but it is different if your program communicates with
something like an external RAM chip or similar, because it may make a
difference to the way these chips operate if they have random data applied to
their operating pins.

At this stage take note of the value in the PC box. It should be 0005. Press
STEP again and the program should then CALL the delay500 subroutine. Now
look at the new value in the PC box. Instead of being 0006, it is 0009. The
processor has changed it’s program counter and is now pointing to the first code
line of the subroutine. The code box will not show this line until the simulator
begins executing code again.

My First PIC Projects - Page 56

The STACK box will have the number 0006 in it. This is the ROM address that
the PIC needs to start executing from after it has completed the subroutine code.
This number is the ROM address following the CALL Delay500 instruction. If
you double click on the STACK box you can see the 8 levels of stack that are
available in this chip, and at the moment, ROM address 0006 is at the top. When
a RETURN instruction is executed the most recent address will be POPPED from
the stack, placed back into the Program Counter and code execution continues
from this address. In this case is will be address 0006.

There are animated tutorials on this subject shown in the MicroPrac program.

Press STEP again and watch what happens.

You should see a Substitute RETURN instruction listed. The 0006 address
value has been POPPED from the stack and placed back into the program
counter. So why didn’t the subroutine code execute?

The answer is in the line of source code that you wrote earlier on. Here it is.

Delay500 clrf DelayL ; /R clear DelayL to 0

See the /R written at the start of the comment. This is a special Compiler
Directive used for the MicroSim and MicroPlay simulators.

Do you remember what was mentioned earlier about simulators being a little bit
slower at executing code than a real chip? If we were to use the full 500mS
subroutine with the MicroSim simulator you could be waiting for ages to see the
LED flash on and off.

By using the /R compiler directive, the simulator substitutes the code line it
appears on for a RETURN instruction. In this way we can bypass the Delay500
subroutine completely and it appears to us that the code runs much faster.

There are three other Compiler Directives available but they are only recognised
from within MicroSim and MicroPlay, and because they are in the comment part
of your code, all of the assemblers ignore them. That way the directives don’t
change the way your source code is assembled for a real chip.

Press STEP again, and the next instruction will execute from ROM address
0006. This will turn off the LED because it sets a Logic 1 level on pin RA4.

Now press STEP twice to execute the Delay500 subroutine again. While you
do this you will notice the Stack has the address 0008 PUSHED into it this time.

My First PIC Projects - Page 57

This is the ROM address following the second call Delay500 instruction.

If you remember the source code, the next line should be the one that causes
the processor to jump back to the start of the LED flash loop. Press STEP and a
goto Start instruction should be executed. The PC box should have ROM
address 0004 in it now, and we are back to the start of the loop.

You can keep pressing the STEP button now if you wish, or you can press the
RUN button to let the simulator run continuously so you can see the results
faster. Afterwards, press STOP when you have finished.

If you want to see it run a lot faster you can eliminate the animated part of the
simulation by clicking on Display - Visual. If this menu item is not ticked,
the animation is not used. Try it, and press the RUN or STEP buttons to see the
effect.

There are many more options to see with the MicroSim simulator, so look at the
help file for this program and don’t be afraid to experiment.

If you would like to continue here, please stop the simulation and close the
MicroSim simulator program.

Now run the other simulator called MicroPlay.

On the top left corner of the screen there is a button that loads a List File
into the program. Click on this and select the flash.lst program
again. The file name will appear in the top title bar.

Next click on the Load Schematic file button and select the file called
flash.cct. This will display the LED flash circuit we have been discussing.

Now click on the RUN button to start the simulation. MicroPlay will begin
executing the code in the flash.lst file as well as simulate the
electronic circuit on the screen. You will notice that MicroPlay is a lot faster than
MicroSim and the LED is now flashing too quickly to see properly.

Stop the simulation by clicking on the STOP button.

To slow code execution down, try using the STEP button. Each time you
press it MicroPlay will execute the code one line at a time.

My First PIC Projects - Page 58

If you want to see the code lines as they execute, press on the Code List
Window button. Each single step line of code that is executed will be
highlighted in this window.

The reason that the simulation seems to run too fast is because the /R Compiler
directive is still part of the code listing. You should be able to see the
Substitute RETURN while single stepping and viewing the Code List Window.

To remove this directive, it will be necessary to edit the source code. If you open
flash.asm using Notepad, find this code line.

Delay500 clrf DelayL ; /R clear DelayL to 0

Now delete the compiler directive, save the file again, and use Mpasmwin to
reassemble the code.

Delay500 clrf DelayL ; clear DelayL to 0

After it has been assembled, you must reload this file back into MicroPlay with
the Load List File button and then click on the RUN button again. This time it
may appear that the LED is not flashing at all, but if you watch the instruction
counter at the top right of the screen when it gets to about 600,000 cycles, the
LED should change state. From then on, the LED will change state at the same
rate.

As you can see these two simulators are a lot slower than real life. There are
some simulators around that can operate nearly as fast as a real chip, and if you
want one, try doing a web search for PIC simulators. You may even find one for
free.

What if you want to watch the RAM register values change in MicroPlay? To do
this you need to edit the source file again.

Open it up again with Notepad and find the lines with these RAM label
definitions on them.

DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte

Add the /WD directives as shown on the following lines, save and reassemble
the file again with Mpasmwin.

My First PIC Projects - Page 59

DelayL equ 0x20 ; /WD delay register LOW byte
DelayM equ 0x21 ; /WD delay register MID byte
DelayH equ 0x22 ; /WD delay register HIGH byte

This new compiler directive will cause MicroPlay to display these RAM labels in
the simulator Watch Window. If you run MicroSim again you will now find these
labels listed in the RAM List Window. They will also be displayed in Decimal. If
you would like them displayed in Binary, use the /WB directive, or for HEX you
can use the /WH directive.

To view these RAM locations in MicroPlay click on the Watch Window
button.

By using MicroPlay you can build many circuits with the components supplied,
and it is quite easy to create them.

You can easily change the led flash circuit so that it flashes from pin RA0
instead of RA4. Move the cursor over the wire that connects the LED cathode to
RA4. When the mouse is over the wire, the cursor will change to a pair of wire
cutters. Now click the left mouse button and the wire will disappear.

Now move the cursor to the yellow connector near pin RA0 and it will change to
a cross. Press the left mouse button to start drawing the wire. Each time you
need to change direction while running the wire, press the left mouse button and
continue. When you have the end of the wire drawn to the center of the yellow
connector box on the LED cathode, press the left mouse button to complete the
connection. If you press the right mouse button before completing the
connection, the wire will disappear.

If you managed to complete this new connection, press the RUN button again.
You should see that nothing appears to happen. That is because you have not
changed the source code to make Port A pin RA0 control the LED.

Open the source file flash.asm again and change this code line.

LED equ 0x04 ; PortA RA4 = bit 4 for LED

To this.

LED equ 0x00 ; PortA RA0 = bit 0 for LED

Now the LED will be controlled by Port A pin RA0.

WHY?

My First PIC Projects - Page 60

This is one of the code lines that controls the LED.

start bcf PortA,LED ; turn on LED on RA4

The Label LED now has a value of 0, not 4. Therefore the BCF instruction
changes bit 0 in Port A not bit 4 and this instruction now affects pin RA0 instead
of RA4.

You should now go through the comments in the source file and change all the
RA4 references to RA0. This is keeping up the practice of good documentation.

Save the source file and reassemble with Mpasmwin.

Reload the list file back into MicroPlay and click on the RUN button. The LED
should now flash as before.

If you want the LED to be on when pin RA0 is
logic 1 and off when it is Logic 0 just change the
wiring to be the same as the following schematic.

When pin RA0 is at Logic 1, 5 volts is connected
to it via switches in the chip and causes 3mA of
current to flow through the 1K ohm resistor and
LED to ground. The LED is therefore on.

When port pin RA0 is at Logic 0, 0 volts is
connected to it via switches in the chip therefore
no current flows in the circuit, so the LED is off.

To change the circuit, use the wire cutters to delete all the wiring. Now delete the
5 volt component by placing the mouse over the top of it, hold the CTRL key
down and click the left mouse button.

We now need a Ground component and these are located in the
component palette at the top of the screen under the heading POWER.
Click on this tab and then click on the ground symbol. A shadow of this
component will appear on the work space, so move it around with the mouse
until it is in a position near the bottom of the screen directly under the other
components. When you are satisfied with the position, click the left mouse
button to paste it to the work space.

Now move the LED and resistor down below Port A pin RA0.

My First PIC Projects - Page 61

You can do this by holding down the SHIFT key and then clicking on the
component with the left mouse button. Now connect up the circuit the same as
shown in the schematic by drawing the wires as mentioned previously.
Now press the RUN button again, and the LED will begin to flash again, but this
time it will be on when the RA0 pin is at Logic 1.

If you want to see the logic level on the port pin, press the STOP button.
Now click on the TOOL tab on the component palette and then on the
Logic State tool. Drag the component somewhere near pin RA0 and place it.
Now connect a new wire from pin RA0 to the yellow connector on the logic
component, and press RUN. When RA0 is at Logic 0 the green LED will be lit,
and when RA0 is at Logic 1, the red LED will be lit along with the original red
LED.

If you want to speed up the LED flashing a bit, try reducing the value that is
loaded into the DelayH register. You can also leave out the third code loop
within the delay routine altogether.

Just put a /R compiler directive on this code line in the Delay500 subroutine.

decfsz DelayH ; /R subtract 1 from DelayH

Now the subroutine will end before it decrements DelayH. Try it out and see, but
don’t forget to reassemble the source code with Mpasmwin.

If you would like to see the digital waveform that is now coming out of pin RA0,
stop the simulation and click on the TOOLs tab and then on the Logic
Analyzer button. Drag this component into a suitable spot on the screen.

Now connect a wire from the A terminal to pin RA0. Place a 5 volt
component on screen near to the Logic Analyser T terminal, which is the
Trigger input. Now connect the T terminal to the 5 volt component.

Double click on the Logic Analyser and an options window will appear. Change
the value in the WINDOW edit box to 10000 uS, and close the options window.

Now press RUN. You should see the square wave that is produced from RA0.

Try placing an inverter between RA0 and the Logic Analyser B terminal.

There are many other components to choose from in MicroPlay. Some are easy
to use and some like the LCD display are complicated.

My First PIC Projects - Page 62

There is a lot of documentation about these components in the MicroPlay help
file which is available from the on screen help button. There is also a lot of
documentation in the MicroSim simulator help file which you may like to look at.
Another good source of information about the PIC 16F84 is the actual data
sheet. This is available as a PDF file located on the CD ROM in the ACROBAT
directory.

You may have noticed that I am trying to get you to use a text based assembler
rather than MicroPlan. You can use MicroPlan if you want to, but it will be of
greater benefit the sooner you get used to typing code for assembly. After all, as
you may have now started to realise, it is not that hard.

The next stage of the LED flash project is to get it working in the real world. If
you have modified the original LED flash program, please restore it to it’s
original source listing. You can look back through these notes for it if you like.

Next comes the real test.

The Real World

Now comes the stage where you get to test the program in the real world. If the
program worked successfully with the simulators, then it should work well in the
real world. The only difference will be the time it takes for the delay routine to
execute. You saw that it took around 600,000 instruction cycles to complete
when using MicroPlay, so in the real world it will take around 600mS with a PIC
running with a 4MHz clock speed. I know we were aiming for 500mS, but for this
program it does not matter that much.

To make the project come to life we are going to use the MicroPro board to
program the chip and provide a means to connect the LED and resistor to the
PIC. If you haven’t constructed this board, please see program.pdf for
construction details. A 5mm red LED and a 1K ohm resistor should have been
supplied with the Experimenters Kit.

The MicroPro PCB is designed to plug into a solderless breadboard which
makes experimentation and circuit prototyping easy. Most components can be
connected together directly on these boards, but sometimes you will need small
insulated wire links. Single strand tin plated telephone wire is excellent for this
purpose.

My First PIC Projects - Page 63

The following diagram shows you how to connect the LED, resistor and MiniPro
to the solderless breadbord.

Power should be made available
for the MicroPro board, but do
not turn it on yet. Connect the
MicroPro board to the PC’s
serial port with a standard serial
cable.

When you use any of the
MICRO’s programs that use the serial port, you may see an error message
because some other device or program is using the same serial port that the
new program is trying to get control of. You cannot have MicroPlay, MicroSim,
MicroPro or MicroBasic open at the same time without causing a serial port
conflict. Sometimes the mouse causes trouble too.

The default serial port used by the MICRO’s software programs is COM1. This
can be changed by opening a file called com.dat which is located in the
software installation directory. This is a small text file which tells all of the
MICRO’s programs which COM port to use and the serial baud rate.

The default text is:

1
19200

You can change the “1” to any port between 1 and 4, but do not change the
“19200” baud number. After you have made the COM port change, you can save
the file and try running MicroPro again. You may have to do this a few times to
get a free com port number.

Once this has been successfully set up, and everything is connected, you are
ready to program the PIC chip for the first time.

Chip Differences

The MicroPro board is trying to simulate a PIC 16F84 chip. In order to do this
there are a few changes needed in your software.

The general purpose RAM in the 16F84 starts at address 0Ch, but it starts at
address 20h in the 16F873. Please use addresses above 20h to 4Fh when using
RAM for your program. This corresponds to the upper 48 of the 68 available
locations in the 16F84.

My First PIC Projects - Page 64

You can now apply power to the main MicroPro board. The LED below the PIC
processor chip should now be lit. Start the PIC programmer software called
MicroPro.

The next task is to select the MicroPro chip for programming.

Click on the CHIP delector and scroll down the list that is displayed for an item
with this name- USER. This selection tells MicroPro that you want to program the
PIC chip on the MicroPro board.

Now click on the LOAD button and select the file called flash.hex. This was
the file that you created with Mpasmwin earlier, but make sure this file was
created from the original source code listing. If in doubt, check the flash.asm
file and reassemble it if necessary. After you load the file, you should see that
the HEX file contents have been sorted and displayed in a list on screen.

We have now reached the stage where we can program the chip. It seemed an
awful long time to reach this point, but don’t despair, the procedure gets much
faster as you become more experienced.

Now press the PROGRAM button on the MicroPro screen.

The active LED on the MicroPro board and the progress bar should indicate the
programming stage. When the programming is complete, a dialog box will be
displayed.

Before going any further, do a quick check to make sure the LED and resistor
are connected properly on the breadboard.

Now for the big test !!

Press the RUN button which is located in the fuse panel in the MicroPro screen.
If all is well the LED should now be flashing on and off
every 600mS or so.

If this is the case, jump up and down and scream for
awhile and then find someone to pat you on the back.

You have done very very well to get to this point, and
you should be proud of your accomplishment.

My First PIC Projects - Page 65

If the LED is not flashing then don’t worry too much. Things like this happen to
the best of us, and usually you will find that the solution is quite simple.
Sometimes however, the problem can be hard to
find so you may have some work to do. Don’t let
this get you down either, because it’s problems like
this that makes you a better programmer, and now
you will learn much more than someone who got it
right the first time.

These are some of the things you could start to
look at.

Did the programmer appear to work as expected? If not check it over for
problems. Usually MicroPro will generate an error message if it cannot
successfully program a device or communicate with the PC.

Check the board for errors such as parts placement and orientation of polarised
parts like chips and electrolytic capacitors. Make sure the resistors are in the
right positions and check the circuit board for shorts and open circuit
connections.

Check the various voltages throughout the circuit.

Make sure the flash.asm source code is correct. Re-assemble it and make
sure you have chosen the correct HEX file for programming.

Is the LED inserted into the breadboard the correct way around, and are the
other connections correct?

If you are positive that everything should be right, try programming again.

If it still doesn’t work and you are getting frustrated at this stage, put things aside
and have another go later. Sometimes you will spot the obvious after a break.
Ask a friend if they can help find the problem. If the project still fails and the PC
does not report any errors, you may have a faulty 16F873 chip so you may have
to find a friend with a programmer to reprogram the bpro2.hex code located in
the software installation directory..

I can assure you, the project does work, so please have patience and persist
until you find the problem. When you do find it, give yourself a double pat on the
back for the extra effort you put in.

My First PIC Projects - Page 66

If all is well at this stage, you might like to experiment with the software and try
different delays and different port pins. After you are happy, you might like to
move on to the next project.

Remember, the 16F873 on the MicroPro board is sensitive to static damage, so
please treat it carefully.

7 Segment LED display

Have you ever wondered how microprocessors can display numbers and other
information. Well, wonder no further, because now you are going to find out.

With this project you will learn how to control a 7 segment LED display. These
devices are just made out of ordinary LEDs but are arranged in such a way that
we can make legible characters out of them when the are energised. All of these
types of LEDs can display numbers and some can display the alphabet as well.
These are called alphanumeric displays.

As with any new project, we have to go through the planning stage, so we will
start by figuring out the circuit and how it will be connected to the PIC.

There are 7 LED segments used with this type of display, and
one extra LED for a decimal point. This makes 8 LEDs in total.

Port A would not be much good to control the display because
it only has 5 pins available. Port B on the other hand, is a
much better choice because it has 8 pins so we can use one
to control each LED. You can also split the LEDs between
Port A and Port B if you want to, but that will result in some
tricky code. You will soon find out how easy it is to control the
display from Port B.

My First PIC Projects - Page 67

This is the connection diagram for the 7 segment display that is supplied with the
Experimenters Kit. It is a Common Cathode type, which means that all of the
LED cathodes are connected together within the display and these connections
appear at the two COM terminals. There are also connector pins shown for each

LED segment A - G and the Decimal Point.

There is another type of display called a Common
Anode type, and as you may have already
guessed, the LEDs are reversed and all the anodes
are connected together.

This is how the common cathode display is
connected internally. As you can see there is not
much difference with this type of display and a
normal LED. There’s just more of them.

We can still use the same value 270 ohm series
resister in our new circuit because the LEDs will have the same voltage drop.
The only difference is there will be 8 resistors in this circuit, one side of each
connected to a LED anode and the other to the Port B pins. There will still be a
current of around 10mA flowing in each LED when a port pin is set as an output
high, thus turning it on.

This is the circuit we will use to connect the 7 segment display to Port B.

Now that we have the circuit designed, we need to decide what we are going to
use the display for. First off, what about a program that will light up each LED
segment in turn. We can use a very similar program to the one we used
previously.

My First PIC Projects - Page 68

Here is the start of it.

 Title "mICro’s 7 Segment Program A"

 list p=16f84 ; processor type
;
; This program is used to control a 7 segment display
; The display is connected to PortB pins
; The program energises each segment then repeats
;
PortB equ 0x06 ; PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
Carry equ 0x00 ; Status Carry bit = bit 0
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
Display equ 0x23 ; display data
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

As you can see, it is nearly exactly the same as the start of the previous source
file. The only difference is a label called Display has been added and some
others are missing because we do not need them now. We are not using Port A
this time, but we still set all the Port pins to outputs. Remember, we do not want
the Port A pins to float as unconnected inputs.

The next task is to energise each LED segment in turn and put a delay in
between.

We are going to use the newly defined Display register to hold the data that
will be written to Port B to turn on each LED.

This is one way we can use the General Purpose RAM locations inside the PIC,
whicj is to store and modify the data that our programs use.chart for the program.

My First PIC Projects - Page 69

This is a flow chart of the new program.

The value stored in this RAM register is shifted left
each time the code loop executes. Eventually the
Carry Flag in the STATUS register will be set to
Logic 1 and this is the signal to reset the Display
value back to one. You can see in the flowchart that
there are two loops, and each one gets executed
depending on the logic state of the Carry Flag.

There are some new programming concepts we
need to know about here. One is the shift left
instruction and the other is the Carry Flag.

The Carry Flag is bit 0 in the Status register.

This bit can be automatically set to Logic 1 or cleared to Logic 0 by a number of
different instructions. Some of these are ADDWF, SUBWF, BSF, BCF, RRF and
RLF. The instruction we are interested in is RLF which means to Rotate Left
File. In PIC terms a File refers to a RAM location.

This is how the RLF instruction works.
Suppose this is the binary value stored in Display and the Carry Flag is set to
Logic 0.

Display = 0 0 0 0 0 0 0 1 Carry = 0

Now a RLF Display instruction executes and each bit in Display if shifted left
by one position through the carry bit. The carry bit [0] is shifted into Display Bit
0 and Display Bit 7 [0] is then shifted into the carry bit.

My First PIC Projects - Page 70

Now suppose this is the binary value stored in Display.

Display = 1 0 0 0 0 0 0 0 Carry = 0

After the RLF Display instruction executes, each bit in Display if shifted left
by one position through the carry bit.

Notice how the carry bit changed to Logic 1 after the instruction RLF executed.

According to the flow chart, Display is initially set to a value of 1. We can do
that by using these instructions.

Loop1 movlw 1h ; set Display value = 1
 movwf Display

Now we energise Port B bit 0 to turn on the first LED segment, which is segment
A. At the moment Display has a value of 1 stored in it, which is 00000001 in
binary. If we write this value to Port B, that will set pin RB0 to a Logic 1 state
which turns on the A segment, and Logic 0 to all other bits which turns the other
LED segments off.

We can accomplish that by using these instructions. The first one gets the value
stored in Display and puts it into the W register. The second one sends this
value from W to PortB.

Loop2 movf Display,w ; put Display into W register
 movwf PortB ; now send this value to PortB

PortB will now have the binary value 00000001 and LED segment A will light.

Now the flow chart says to shift the Display value left by one bit position. We
use this instruction do that.

 rlf Display ; shift Display value left

Remember we could write the instruction with the destination bit included, but
because it is missing, the assembler will know that the result is to be placed
back into the RAM register, not W.

My First PIC Projects - Page 71

We can write it like this if we like.

 rlf Display,f ; shift Display value left

At this stage, the Carry bit will be set to Logic 0 because Bit 7 that came from the
Display register was zero.

The Carry bit could have been a Logic 0 or a Logic 1 value,
because it has not been specifically set previously, and this
logic value will have been shifted into Display bit 0. Lets
assume that it was zero. The carry bit now equals Logic 0
and Display equals 00000010.

We need a time delay next. Do you remember how it was mentioned earlier that
we can reuse code blocks from other programs, or from a library of routines we
have created? In this program we can use the same Delay500 subroutine from
the previous LED flash program, and to use it we can still use this instruction.

 call Delay500 ; execute a 500mS delay

Just remember to redefine the Labels for the registers that the subroutine uses
at the start of the program, or the assembler will complain.

According to the flow chart, there are two paths the program can now take
depending on the state of the Carry bit. It was set to Logic 0 after the RLF
Display instruction which means that this bit is not set, so the program
branches using the first loop to go back and write Display to Port B again.

Now the loop starts again and the new value 00000010 stored in Display will
be written to Port B. This turns off the LED connected to pin RB0 and lights the
LED connected to pin RB1.

As this loop keeps executing, the LEDs will light one by one until the Decimal
Point LED is lit. When this happens the Display register will have the binary
value 10000000 stored in it.

Now when the RLF instruction executes, Display will have the binary value
00000000 and the Carry bit will be set to Logic 1.

My First PIC Projects - Page 72

The program will now branch using the second path and loop back to reset the
Display value to 00000001. This new value is written to PortB and the process
continues forever.

These are the instructions that test the Carry bit and decide on which loop to
use.

 btfss Status,Carry ; test carry bit
 goto Loop2 ; carry = 0, do Loop 2
 goto Loop1 ; carry = 1, do Loop 1

The instruction BTFSS means to Bit Test a File and Skip if the bit is Set.

btfss Status,Carry means to test the Carry bit in the Status register, and if
it is set to Logic 1, skip over the following instruction.

If the Carry bit = 0 [clear] when this instruction executes, the following
instruction, goto Loop2 is executed.

If the Carry bit = 1, [set] the goto Loop2 instruction is skipped over and the
goto Loop1 instruction is executed instead.

You can use the BTFSS instruction on any RAM register incuding the ports.

 BTFSS Porta, RA0 ; bit test PortA bit RA0
 BTFSS Display,0h ; bit test Display bit 0
 BTFSS Status,z ; test if any ALU result was 0

Here is the complete source listing for this program.

Title "mICro’s 7 Segment Program"

 list p=16f84 ; processor type
;
; This program is used to control a 7 segment display
; The display is connected to PortB pins
; The program energises each segment then repeats
;
PortB equ 0x06 ; PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
Carry equ 0x00 ; Status Carry bit = bit 0
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
Display equ 0x23 ; display data

My First PIC Projects - Page 73

;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

Loop1 movlw 1h ; set Display value = 1
 movwf Display
Loop2 movf Display,w ; put Display into W register
 movwf PortB ; send this value to PortB
 call Delay500 ; execute a 500mS delay
 rlf Display ; shift Display value left
 btfss Status,Carry ; test carry bit
 goto Loop2 ; carry = 0, do Loop 2
 goto Loop1 ; carry = 1, do Loop 1
;
; --------------------------------
; SUBROUTINE: waste time for 500mS
; --------------------------------
;
Delay500 clrf DelayL ; /R clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
Wait1 decfsz DelayL ; subtract 1 from DelayL
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay

 end

Do you think this is has been easy so far? Say yes, you’ll feel better.

This is how the 7 segment display should look when the program is executing.

The segments may have a RED colour depending on the part supplied.

Try this program out in MicroSim. The /R compiler directive is still in the delay
subroutine so it will be skipped. This file is available in the MICRO’s directory
and is called seg7a.asm.

My First PIC Projects - Page 74

Please assemble this with Mpasmwin and then try it out. When you start
MicroSim and load the file seg7.lst, click on Modules - PortB - Seg7,
and a 7 segment display will appear for you to use on Port B.

You can also use MicroPlay if you wish. You can either design you own circuit
or there is one in the software directory called seg7.cct.

Did the program continue to work properly after the decimal point was lit or did
some strange things start happening like multiple LED segments lighting up?

This is what happened after the eighth RLF Display was executed. The carry
bit was set to Logic 1 this time.

Now when Loop1 starts again, Display is reset to the value 00000001. What
do you think the Display value will equal the next time it is shifted left?

As you can see, it now equals 00000011 which is not what we expected or
wanted.
Try adding this code line before rotating Display left. Reassemble and simulate
the file again using MicroSim.

 bcf Status,Carry ; clear carry bit to Logic 0
 rlf Display ; shift Display value left

Do you have an idea of why the code works properly now? The Carry bit was not
always zero when the rlf Display instruction was executed. This caused
another bit to be set to Logic 1 in the Display register which was then written to
PortB thus turning on 2 LEDs.

That was a sneaky error, so please remember this.

Always set individual bits or registers
to known values before you use them.

My First PIC Projects - Page 75

As an exercise, try rotating the LED segments the other way
around. As a hint, the compliment to the RLF instruction is
the RRF instruction. This rotates the RAM register bits to the
right through the Carry bit instead of to the left.

Try using the mini instruction tutorial in the MicroSim simulator to see how the
RRF and RLF instructions work. You will also notice during these tutorials, that
you have the option of using MicroPrep which shows you how these instructions
work on a binary number. Try out MicroPrep for yourself if you like.

The Counter

You should now be getting an idea as to how you can use code to control the
port pins. Just use the TRIS registers to set the pins as outputs, remembering
about the RAM page bit, and then just write a value to PortB.

It was mentioned earlier that we can use the LED display to show numbers, so
that it what we are going to do now. The good thing is that we can still use most
of the code from the previous programs, and a better thing is that we are also
going to learn about a concept called a LOOKUP TABLE.

A lookup table is a list of data bytes stored sequentially in program ROM, or in
RAM. Sequentially just means one after the another and so on.

Why do we use a lookup table?

In this project we are going to make the display count from 0 - 9 and then repeat.
In order for the PIC to be able to do that we need ten separate binary values that
when written to PortB, will light the correct LEDs to display each digit.

Do you remember that earlier on, it was mentioned that we can use binary
values in our source code when we write data to a port? This makes it easier to
comprehend because we can instantly see a port bit that will be at 5 volt and
those that will be at 0 volt.

Suppose we want to display the digit 0 on the display. How do we define a value
to write to Port B that will to do that? The answer is surprisingly simple.

My First PIC Projects - Page 76

This is the LED display showing the digit 0.

From this diagram you can see that we need to energise
segments A, B, C, D, E and F.

Segment A is connected to pin RB0, segment B to pin RB1,
segment C to pin RB2 etc., which means that RB0, RB1, RB2,
RB3, RB4 and RB5 must be set to Logic 1 and RB6 and RB7
must be set to Logic 0 for the display to show this digit.

Now that we have figured this out, it is just a simple matter to write the binary
value to Port B that sets each of the pins to those logic states.

This is the binary value.

0 0 1 1 1 1 1 1

As we have seen before these are the instructions that allow us to write a value
to Port B.

 movlw 3Fh ; this is digit 0 value
 movwf PortB ; write it to PortB

You can see that it is hard to visualise the digit data when you use a HEX literal
value. Lets change it to binary and see the difference.

 movlw b'00111111' ; this is digit 0 value
 movwf PortB ; write it to PortB

You can instantly see the PortB bits
will turn the LEDs on and those that
will turn them off. These are the
values that will allow us to display
all the decimal digits from 0 - 9.

To create these binary values it is
simply a matter of deciding which
segments need to be on and then
make the corresponding bit value
equal 1.

Notice that bit 7 is always 0. That is
the decimal point led and we don’t
need it to come on for this program.

The next task is to figure out how we put that information into a lookup table.

My First PIC Projects - Page 77

Why can’t we just write something like this instead of using a lookup table?

 movlw b’00111111’ ; 0
 movwf PortB
 movlw b’00000110’ ; 1
 movwf PortB
 movlw b’01011011’ ; 2
 movwf PortB

 etc

You can if you want to in this particular program. But what happens if you want
to be able to use any of the ten digit values, and not just in a fixed way. With this
approach you can’t.

When we used a subroutine before, we used a RETURN instruction to tell the
processor that the subroutine is now completed. There is another instruction that
does the same task, but it performs an extra function as well.

It is called the RETLW instruction.

This means RETurn from a subroutine with a Literal value in the W register.

Suppose we use this instruction to call a subroutine called DataTable.

 call DataTable ; put digit value in W

This will tell the processor to save, or PUSH, the next ROM address to the stack
and then jump to the code where the subroutine DataTable starts.

Now suppose this is the subroutine DataTable, and at the moment, the W
register contents are 0h.

DataTable retlw b’00111111’ ; 0

Because the next instruction is RETLW, the processor knows it is the end of the
subroutine and it will pull the top address from the stack, load it into the Program
Counter and continue executing code from this ROM location.

When the processor returns from this subroutine, the W register contents will
have changed from 0h to 3Fh which is the HEX value of 0011 1111.

Now if the next instruction writes the W value to PortB, the display will show the
digit 0.

My First PIC Projects - Page 78

 call DataTable ; put digit value in W
 movwf PortB ; now display new digit

What happens if we add more digits to the DataTable subroutine like this?

DataTable retlw b'00111111' ; 0
 retlw b'00000110' ; 1

Now this may look well and good, but how can we get past the first retlw
instruction to access the other digit data. If we call DataTable the way it is, the
subroutine will always return with the digit 0 data in the W register.

The task is to modify the DataTable subroutine so that it contains each of the
binary values that allows us to display ten decimal digits and also the means to
access any one we like.

To figure out how we are going to solve this problem we need to understand how
the Program Counter (PC) works. You can see animated tutorials on this subject
in MicroPrac, but we will have a brief look at it here.

You should remember that each instruction occupies a single ROM location in
the PICs program memory and these start at address 0000h. The PC always has
the value of the current instruction, and at power on it is set to 0. After each
instruction executes, the PC is incremented by one, unless it was specifically
changed by that instruction. As you have already seen, instructions that do this
are - GOTO, RETURN and RETLW. The skip type of instructions like BTFSS
don’t change the value of the PC to skip over the following instruction. If the
following instruction is to be skipped, the processor actually gets that instruction
but does nothing with it. Then it continues. That is why these type of instructions
sometimes take 2 cycles to complete.

Just suppose that the first instruction of the subroutine DataTable is located at
ROM address 001Ah, (address 26 dec), and the processor executes this next
instruction:

 call DataTable ; put digit value in W

After pushing the current ROM address, plus one, onto the stack, the PC gets
loaded with the value 001Ah. The processor will now start fetching and
executing instructions from this ROM address.

You may have noticed on the MicroSim simulator screen that a register called
PCL was attached to the program counter. The Program Counter Low register is
a RAM register like all the others but it always has the same value as the lower 8

My First PIC Projects - Page 79

bits of the program counter. It does this because they are both physically
connected. From the example above, the PCL register will have the value 1Ah,
(26 dec), when the processor is executing the first line of the subroutine.

Start MicroSim again and load the flash.lst file again and run it. You will
notice that the PCL stays the same value as the low byte of the program counter
which is the box directly below it.

Some examples of this are:

 Program Counter PCL Register

 00A0 A0 (160)
 0100 00 (0)
 03FF FF (255)
 001A 1A (26)

The PCL register is only 8 bits wide, so that is why it only matches the lower 8
bits of the program counter.

As mentioned, the PCL register is a RAM register like all the others and this
means you can read and write values to it as well.

If you write a value to this register you also change the lower 8 bits of the
program counter, and this makes the processor start fetching from the resulting
new ROM address. Some instructions like MOVWF, SUBWF, BSF and ADDWF
can be used on the PCL register to change it’s value.

If the PC value is 001Ah which is the address of the start of the DataTable
subroutine code, what would happen if the instruction that is just about to be
executed here changed the value in the PCL register? Would this now provide a
means to make the processor jump to any retlw instruction in the data table?
Yes it most certainly would.

This is the complete data table subroutine.

DataTable addwf PCL ; add W value to PCL
 retlw b'00111111' ; 0
 retlw b'00000110' ; 1
 retlw b'01011011' ; 2
 retlw b'01001111' ; 3
 retlw b'01100110' ; 4
 retlw b'01101101' ; 5
 retlw b'01111101' ; 6
 retlw b'00000111' ; 7
 retlw b'01111111' ; 8
 retlw b'01101111' ; 9

My First PIC Projects - Page 80

The instruction addwf PCL tells the processor to add the contents of W and the
PCL registers together and place the result back into PCL. If W equals 0, then
nothing gets added to PCL, if W equals 1 then 1 gets added to PCL and so on.

You might think that adding zero to the PCL will cause the processor to keep
executing the addwf PCL instruction indefinitely. This would be true except for
the fact that the program counter is incremented by 1 every time an instruction is
executed.

So, if the PCL register value equals 1Ah and the W register value equals 0, then
the result of the addition placed into the PCL register is 1Ah.

Then the program counter which still has the value 001Ah is incremented to
001Bh and the retlw b’00111111’ instruction is executed. This instruction
ends the subroutine and loads the W register with the digit 0 data.

If the W register equals 1 when this subroutine is called, the value 1 gets added
to PCL which will now equal 1Bh. This also changes the program counter value
to 001Bh. Then the program counter is incremented by one so it now has the
value 001Ch. This means that the next instruction executed is retlw
b’00000110’ which ends the subroutine and loads the W register with the digit
1 data.

Here is part of the list file that you will create later with Mpasmwin and shows the
ROM addresses we have been discussing. Notice the RETLW instrucion HEX
data. The PIC understands 34XX for this instruction and the XX is the 8 bit value
that is made up from your instruction data. If you check digit 0 you will see that
binary 00111111 equals 3Fh and that is the first retlw instruction.

001A 0782 00072 DataTable addwf PCL
001B 343F 00073 retlw b'00111111' ; 0
001C 3406 00074 retlw b'00000110' ; 1
001D 345B 00075 retlw b'01011011' ; 2
001E 344F 00076 retlw b'01001111' ; 3
001F 3466 00077 retlw b'01100110' ; 4

All we need to do to use this subroutine is make sure the W register contains a
value between 0 - 9 and after the subroutine executes, the W register will
contain the corresponding digit data for the display.

One thing you must make sure of is that the W register does not exceed the
value 9. If it does the program counter will be changed to an address higher than
the end of the lookup table. This will cause the processor to fetch the wrong
instructions and this is definitely not desirable.

My First PIC Projects - Page 81

We already know how the LED display is going to be
connected to the PIC and shown at right is the flow
chart for this program. As you can see, it shows what
we have just been talking about.

We can use most of the start of the previous
program, but we are going to rename the Display
label to Pointer because this register is going to
be used as a data pointer for the lookup table.
We use the term ‘data pointer’ because the value in
this register is going to be used to point to the
information we want to get back from the lookup
table. Here is the start of the code.

Title "mICro’s 7 Segment Program B"

 list p=16f84 ; processor
type
;
; This program is used to control a 7
segment display
; The display is connected to PortB pins
; The program energises each segment then
repeats
;
PortB equ 0x06 ; PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
Z equ 0x02 ; Status Z bit = bit 2
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
Pointer equ 0x23 ; display data pointer
;
; -------------
; PROGRAM START
; -------------
;

 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

As you may have guesses we can still use the Delay500 subroutine for the
delay. This code is actually going to have two subroutines. One for the delay
and another for the lookup table.

My First PIC Projects - Page 82

After initialising the Ports, we need to set Pointer to zero by using this
instruction.

Loop1 clrf Pointer ; reset the pointer to 0

Now we need to use the lookup table to get the digit data to send to PortB. To do
this we first need to get the Pointer value into the W register. Once we have
this value set we call the DataTable subroutine.

Loop2 movf Pointer,w ; put Pointer into W
 call DataTable ; put digit value in W

Notice how the Loop1 and Loop2 labels match up with the two return paths
shown in the flowchart.

Now that the 7 segment digit value has been placed into the W register by the
DataTable subroutine we write it to PortB.

 movwf PortB ; now display new digit

Next we call the Delay500 subroutine.

 call Delay500 ; execute a 500mS delay

Now we add 1 to the Pointer value. We can do this with a single instruction
called INCF which means to INCrement a File register by 1.

 incf Pointer ; add 1 to Pointer value

It was mentioned earlier that we must make sure that the Pointer value does
not exceed 9. If the Pointer value equals 10 after being incremented, then we
must make sure that it is reset back to zero again, as is shown in the flow chart.

Just how does a processor know when a RAM register is a certain value? The
answer is that is doesn’t. We have to figure out a way of testing the value
ourselves.

Do you remember earlier on, about how the Z flag in the Status register will be
set to 1 when the result of an instruction equals zero? That is how we can test
whether a value is zero or non zero, but it doesn’t allow us to test for other
values.

To do this task we can use an instruction called XORWF, which means to
EXclusive OR the W and a File register together.

My First PIC Projects - Page 83

This may seem a strange way of testing for a value, but let’s have a look at the
truth table for the XOR logic function.

As you can see, if the two bit values A and B are the
same, the result of the XOR function equals zero.

So all we have to do is write some code that gets the Pointer value and then
XOR’s it with the value 10. If the Pointer value equals 10 then the result will be
zero and the Z flag will be set. If the Pointer value is not equal to 10 then the
result will not be zero and the Z flag will be cleared.

Example:

 Pointer = 9 0000 1001 Pointer = 10 0000 1010
 XOR with 10 0000 1010 XOR with 10 0000 1010

 Result 0000 0011 Result 0000 0000
 Z Flag = 0 Z Flag = 1

This is how we code the comparison function.

First, load the test value (10) into W.

 movlw d'10' ; see if Pointer = 10

Then XOR it with the Pointer value, but we don’t want the result to go back to
the Pointer register because it would corrupt the value stored there.

 xorwf Pointer,w ; if it is, reset it to 0

Now we test the Z flag in the Status register.

If it is set [1] we know the value in Pointer equals 10 so we loop back to the
code line that resets this value back to zero. If the Z flag is not set [0] the value
is still less than 10 so it is safe to continue with the display code loop.

 btfss Status,Z ; test Zero bit
 goto Loop2 ; Z = 0, do Loop 2
 goto Loop1 ; Z = 1, do Loop 1

Now we add the code for the two subroutines and we are finished.

A B Result

0 0 0
0 1 1
1 0 1
1 1 0

My First PIC Projects - Page 84

Hands up all those that think this is easy.

Here is the complete code listing for this project.

Title "mICro’s 7 Segment Program B"

 list p=16f84 ; processor type
;
; This program is used to control a 7 segment display
; The display is connected to PortB pins
; The program energises each segment then repeats
;
PortB equ 0x06 ; PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
Z equ 0x02 ; Status Z bit = bit 2
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
Pointer equ 0x23 ; display data pointer
;
; -------------
; PROGRAM START
; -------------
;

 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

Loop1 clrf Pointer ; reset the pointer to 0
Loop2 movf Pointer,w ; put Pointer into W
 call DataTable ; put digit value in W
 movwf PortB ; now display new digit
 call Delay500 ; execute a 500mS delay
 incf Pointer ; add 1 to Pointer value
 movlw d'10' ; see if Pointer = 10
 xorwf Pointer,w ; if it is, reset it to 0
 btfss Status,Z ; test Zero bit
 goto Loop2 ; Z = 0, do Loop 2
 goto Loop1 ; Z = 1, do Loop 1
;
; --------------------------------
; SUBROUTINE: waste time for 500mS
; --------------------------------
;
Delay500 clrf DelayL ; /R clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH

My First PIC Projects - Page 85

Wait1 decfsz DelayL ; subtract 1 from DelayL
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay
;
; ---
; SUBROUTINE: lookup table for display data
; ---
;
DataTable addwf PCL ; add W value to PC
 retlw b'00111111' ; 0
 retlw b'00000110' ; 1
 retlw b'01011011' ; 2
 retlw b'01001111' ; 3
 retlw b'01100110' ; 4
 retlw b'01101101' ; 5
 retlw b'01111101' ; 6
 retlw b'00000111' ; 7
 retlw b'01111111' ; 8
 retlw b'01101111' ; 9

 end

Sometimes the label names get a bit long and they intrude on the formatting of
your program. You can see how this label is getting close to the instruction
Mnemonic.

DataTable addwf PCL ; add W value to PC

You can rewrite the line like this if you like, and the assembler will accept it as
the same thing.

DataTable
 addwf PCL ; add W value to PC

I hope you have understood everything that has been mentioned to this point. If
you are still a bit confused, try reading through it again or have a look at the
MicroPrac tutorial for a more in depth look. If you want to type this program into
a new text file please feel free to do so. It will give you some practice on code
writing. Don’t forget, you can use MicroPlan too if you like.

This program is available from the software directory and is called seg7b.asm.
Assemble the code using Mpasmwin and then try it out in MicroSim and
MicroPlay by using the same LED display circuits as before.

My First PIC Projects - Page 86

As an experiment, try changing this line:

 movlw d'10' ; see if Pointer = 10

to this:

 movlw d'11' ; see if Pointer = 11

Reassemble the code and run it with the MicroSim simulator to see what
happens.

The program counter will be set to fetch an instruction from the ROM address
following the DataTable subroutine. The trouble is - there is no code there and
the program will crash.
Now try altering the code to make the digits count backwards, both backwards
and forwards, or maybe an inverted display. Make the decimal point come on for
every odd or even number displayed.

You might also like to try writing code to count this HEX sequence.

0 1 2 3 4 5 6 7 8 9 A b C d E F.

Try connecting the 7 segment display and 8 resistors to PortB on the breadboard
and try the seg7b.lst program and watch the display count from 0 to 9.
Connect the common pins to ground.

Using Switches

It’s about time we had a look at using port pins as inputs, so in this experiment
we are going to find out how to make the PIC detect to state of a push button
switch.

This seems like a simple task, but as we shall see later, writing a program to do
the task can get a bit complicated. Up to this point we have been using the port
pins when they have been set as outputs. As you may remember from earlier
discussions, they can also be set and used as inputs.

To set a port pin as an input, the corresponding TRIS bit must be set to Logic 1.
I always remember setting the TRIS bits like this:

1 = Input
0 = Output.

My First PIC Projects - Page 87

A pin is in a High Impedance state when it is set as an input. This means that it
offers a very high resistance to any circuit connected to it, and for most practical
purposes, you could say that it becomes an open circuit.

Inside the chip these pins are actually connected to the gates of MOSFETs
which is why they have such a high input resistance. If you know anything about
these devices, you may also recall that they are very sensitive to Static
Electricity, and is the reason you should be careful when handling the chip. Try
and avoid touching the pins unless you have some form of static protection.

This is also a reason why you should avoid floating inputs. The stray electrical
charges around your body and from other sources can actually affect the
sensitive input circuits to such a degree that they cause the chip to malfunction.
Problems like these can be very difficult to find if you don’t suspect a floating pin.

If we look into the input circuit in a simple way, it just detects when a voltage
connected to the pin is low enough to qualify for a Logic 0 state, or high enough
to qualify for a Logic 1 state.

A voltage somewhere in between may cause the input circuit to oscillate
because it can’t decide which state to be in. For this reason we should make
sure that the circuits connected to the input pins create the correct logic levels.
An exception to this is Port A pin RA4. It has a Schmitt Trigger type of input
circuit which can cope with voltages that are slowly changing or not strictly at
logic levels. These subjects are covered in more detail in MicroPort.

Knowing this information, all we need to do is connect a switch to a port pin, set
it as an input, and toggle the switch between 0 volts and 5 volts.

Here is a simple switch circuit and the way it is
drawn now, the PIC would detect a Logic 1 on
input pin RA4. Remember that the pin is a virtual
open circuit, so no current flows through the 10K
resistor into the pin. By ohms law, there is no
voltage drop across this resistor, so 5 volts must
appear on the RA4 pin, which is a Logic 1 level.

A resistor with a value of 10K ohms is fairly
common in a switch circuit like this.

My First PIC Projects - Page 88

When the switch is closed, a 5mA current will flow
through the resistor. The GND, or 0 volt rail, will
be connected directly to pin RA4, which now
becomes a Logic 0 level.

The code that we use to read information from a
port is very simple.

 movf PortA,w ; read Port A

 movf PortB,w ; read Port B

These instructions read all the pin values and
place the data into the W register. The RAM page
bit [Status,RP0] must be set to Logic 0 for these instructions to work. If this bit is
Logic 1, you will read data from the TRISA and TRISB registers instead.

Port A only has five pins so each time you read a value from this register, the
upper 3 bits of this value will always be zero.

000xxxxx (x = RA0 - RA4 bit value)

You can also write data to Port A or Port B while pins are set as inputs, but only
the pins that are set as outputs will change to the new values.

 movwf PortB ; write W value to Port B

Even though 8 bits of data
are written to the Port A
register, the upper 3 bits will
be lost because there are
no pins to write to.

This diagram shows the
basic connections for most
port pins. As you can see,
each port pin has an Input
Latch, an Output Latch and
a TRIS Latch. These latches
are used to store the
individual bit information
and to provide isolation
between the port pins and
the internal data bus.

My First PIC Projects - Page 89

When Port B is written to, the 8 bits of data from the W register are placed into
the output latches. When a pin is set as an output, the corresponding latch value
is connected to the pin and thus to the outside world. That is why when we write
a value to the port it stays there until we change it. The input circuit is always
connected to the pin so you can also read the value of a pin set as an output.

When a pin is set as an input, the output latches are disconnected from the pin
and therefore have no effect.

The port output latches have random data in them at power up, so we should set
them to a known value before we set any pins as outputs. Pins that are left as
inputs will adopt the logic values that are set on them by external circuits.

In the previous project we wrote the software so that it automatically incremented
the 7 segment display after a time delay. In this project we are going to use a
switch to increment the display and we will use the circuit that was shown earlier.

There is one problem that we need to deal with before we start, and that is to
understand the nature of mechanical switches. In the world of computers, things
operate very fast and a lot of things in the real world seem slow by comparison.
When you toggle a switch position, you may think that it is a nice clean transition
from on to off and vice versa. Unfortunately, this is
not the case. If you drop a tennis ball onto the
ground, it will bounce for a while before it comes to
rest. The same happens with switch contacts.
When they open or close, they actually bounce for
a few thousandths of a second before they settle
down. This probably doesn’t sound like much, but a
microprocessor like the PIC can process thousands
of instructions in between these tiny bounces.

Because of this, the processor may interpret that a
switch is opening and closing many times when in
fact you only closed the switch once. The way
around this problem is to create some code that
ignores these bounces.

To illustrate this we will use this flow chart to
construct the new counter program. These flow
charts are slowly getting more complex, but it is still
quite easy to follow what is going to happen in the
program.

There are 3 loops in this program.

My First PIC Projects - Page 90

According to the schematic, when the switch is open, pin RA4 is at a Logic 1
state. When we read Port A and find that bit 4 equals Logic 1, we know that the
switch is open. When bit 4 = Logic 0, we know the switch is closed. These two
states will determine the program flow.

If the switch is closed, we update the display and increment the Pointer value.
If Pointer now equals 10, we reset it back to zero again. You should remember
this part from the previous program.

The start of the program is exactly the same as before, except this time we need
to define PortA and RA4 and we can dispense with the delay RAM registers
because at this stage there is no delay routine needed. Instead of defining the
port pin as RA4 it has been labelled Switch. This will make our source code
look a bit clearer.

This time we need to set the RA4 pin as an input to monitor the external switch
circuit, but for reasons that we shall see later, we will set all the PortA pins as
inputs. The port pins default to all inputs on power on, but it is always safe
practice to specifically set them with code.

Port B is used for the display, so all of it’s pins are set as outputs. We will also
initialise PortB this time, so that when the pins are set as outputs, the display will
be blank instead of showing a random value.

 Title "Switch Counter Program A"

 list p=16f84 ; processor type
;
; This program is used to control a 7 segment display
; The display is connected to PortB
; The program counts from 0 to 9 and then repeats
; each time a switch connected to RA4 is pressed
;
PCL equ 0x02 ; PCL RAM address
PortA equ 0x06 ; PortA RAM address
Switch equ 0x04 ; Switch = PortA pin RA4
PortB equ 0x06 ; PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
Z equ 0x02 ; Status Z flag = bit 2
RP0 equ 0x05 ; Status RP0 bit = bit 5
Pointer equ 0x20 ; display data pointer
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

My First PIC Projects - Page 91

 clrf PortB ; display is blank
 bsf Status,RP0 ; set RP0 for RAM page 1
 movlw b'00011111' ; set all PortA as inputs
 movwf TrisA ; the rest are outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

The start of the Loop1 is the next piece of code and this resets the Pointer
value.

Loop1 clrf Pointer ; reset the pointer to 0

The next thing to do is test the switch to see if it is open or closed. If the switch is
open we must loop back and keep testing it until it is closed. That will be the
signal to increment the counter and update the display.

Previously, we used the BTFSS instruction to test the Z and Carry bits in the
Status register, but we can use this instruction on the ports as well. However, we
need to use the BTFSC instruction instead. This means Bit Test File and Skip
the next instruction if the bit is Clear. We use this instruction because we want to
stay in this code loop until the switch bit [RA4] equals Logic 0.

Loop2 btfsc PortA,Switch ; test the switch state
 goto Loop2 ; it is still open

As you can see, this code will loop continuously while pin RA4 is Logic 1. When
the switch is pressed, RA4 will change to Logic 0, the instruction goto Loop2 is
skipped over and the code following is now executed.

This is the code that gets the next display value and then writes it to Port B to
update the 7 segment display, and is the same as the previous program.

 movf Pointer,w ; put Pointer into W
 call DataTable ; put digit value in W
 movwf PortB ; now display new digit

Now we increment the Pointer value and make sure it is always below 10.

 incf Pointer ; add 1 to Pointer value
 movlw d'10' ; see if Pointer = 10
 xorwf Pointer,w ; if it is, reset it to 0
 btfss Status,Z ; test Zero bit
 goto Loop2 ; Z = 0, do Loop 2
 goto Loop1 ; Z = 1, do Loop 1

Now add the DataTable subroutine and the program is complete.

My First PIC Projects - Page 92

;
; ---
; SUBROUTINE: lookup table for display data
; ---

;
DataTable addwf PCL ; add W value to PC
 retlw b'00111111' ; 0
 retlw b'00000110' ; 1
 retlw b'01011011' ; 2
 retlw b'01001111' ; 3
 retlw b'01100110' ; 4
 retlw b'01101101' ; 5
 retlw b'01111101' ; 6
 retlw b'00000111' ; 7
 retlw b'01111111' ; 8
 retlw b'01101111' ; 9

This program is available in the MICRO’s directory called counta.asm, so
please assemble it by using Mpasmwin.

Now start the MicroSim simulator and load the program counta.lst.

Click on Modules - PortA - Switch and a switch circuit will be connected
to Port A.

Now click on Modules - PortB - 7Seg to connect a 7 segment display to
Port B.

Each time you use the left mouse button to click on the switch, it will toggle
between open and closed. The switch bounce is slowed down quite considerably
to allow you to see the effect.

You can also see that the unused Port A pins are connected to the 5 volt rail via
resistors. These pins were set as inputs, but they are now all safely tied to a
Logic 1 level. If you leave them set as outputs with nothing connected to them,
you can save project costs and size because the pullup resistors are not
needed.

It is not wise to set the pins as inputs and directly tie them to 5 volts or ground. If
the code goes astray for some reason, and the pins accidently get set as outputs
you may have a short circuit problem which may damage the PIC.

You might like to change the Port A [IN] and [OUT] boxes in the simulator to
show a binary number instead of decimal. Make sure the switch is in the OPEN
position and press the RUN button.

My First PIC Projects - Page 93

After the ports are initialized, you will see that the code stays locked in the first
code loop because pin RA4 is at a Logic 1 level.

Now press the switch. You will see the contacts bounce, but the code may not
detect the switch change until the contacts stay closed. After the software
detects the change, it will then update the display and increment the Pointer.

Leave the software execute for awhile with the switch closed and the counter will
continue to be incremented.

Click on the switch again to open the contacts. After the bounce period, the
software will again stay in the switch press detect loop.

Now stop the simulator and click on Display - Visual, which will make the
code run faster. Now make sure the switch is in the open position, click on RUN
and operate the switch a few times.

I’ll just bet that no matter how hard you try, you will not be able to get the display
to increment by one each time you press the switch.

Close MicroSim and run MicroPlay. Then load counta.lst and then the circuit
file called switch.cct. Run the program and you will now find it impossible to
increment the counter by 1 each time you press the switch.

Do you understand what is going on here?

The PIC can execute code extremely fast. Even though you have only pressed
the switch for a very short time, the PIC has executed the code that increments
the display many times. The code as it is now is quite useless in the real world.

You may now like to connect the switch and display circuits to
the breadboard and experiment with them and this code by
using one of the simulators and the Real World Interface. You
will need some insulated wire to make the connections. This
is how the switch supplied with the kit is connected internally
and it easily plugs into the breadboard.

You can also program this code into the MiniPro board and connect the circuit to
suit. The the code will then run in the real world, and you will still see the
problem.

There are two things that need to be done to make the code work as a push
button operated counter. One is to create some code that ignores the switch
bounce, and the other is to make the code recognise when the switch has been
pressed and only increment the counter once for each press.

My First PIC Projects - Page 94

To solve the debounce problem, we need to make the PIC execute a small delay
after the switch has been pressed, or has been released. This delay must be
longer than the time that the switch contacts bounce and usually 50mS will be
enough. By doing this the PIC should only see the correct logic levels on the
switch pin. Here is a diagram explaining the debounce problem.

Let’s try attacking the problem this way. Suppose we
initiate a 50mS delay the instant that the switch press
is detected, The switch contacts should now be
settled in the closed condition. After the delay, we
monitor the switch position waiting for it to release
again, and as soon as this condition is first detected,
we wait another 50mS. The switch contacts should
have then settled in the open position.
Now we increment the Pointer, update the display
and wait for the next switch press and the process
repeats.

Here is a flow chart explaining how the software will
work. All we have changed from the flow chart shown
earlier is the addition of two 50mS delays and another
code loop to monitor for a switch release.

The display will not get updated with the next value
until the switch has been pressed and then released.

The delay routine is going to be very similar to the
one we used previously, but this time it will be much
shorter. The software will rely on the fact that the
switch contacts should have settled down by the time
the 50mS delay is complete. If this is not the case, the
software will not work properly and the delay routines
will have to be lengthened.

Sometimes you may go through many trial and error
periods when you need to determine these and

My First PIC Projects - Page 95

similar types of operating conditions. An easier way would be to use a storage
CRO and view the waveform generated when the switch is opened and closed.

To acheive a 50mS delay using the same time wasting method as shown before,
we only need to use two RAM registers, and we can define them like this.

DelayA equ 0x21 ; delay counter A byte
DelayB equ 0x22 ; /WD delay counter B byte

Now we create a subroutine for this delay by using the following code.

Delay50 clrf DelayA ; /R clear DelayA to 0
 movlw 40h ; set DelayB to 40h
 movwf DelayB
Wait1 decfsz DelayA ; subtract 1 from DelayA
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayB ; subtract 1 from DelayB
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay

This was the code used previously to test if the switch is pressed.

Loop2 btfsc PortA,Switch ; test the switch state
 goto Loop2 ; it is still open

This must be followed by the 50mS delay.

 call Delay50 ; execute a 50mS delay

This is the code to test if the switch is released.

Loop3 btfss PortA,Switch ; test the switch state
 goto Loop3 ; it is still closed

This must also be followed by the 50mS delay.

 call Delay50 ; execute a 50mS delay

Notice the use of the BTFSC and BTFSS instructions to test for opposite switch
states.

My First PIC Projects - Page 96

This is the complete modified switch counter program.

Title "Switch Counter Program B"

 list p=16f84 ; processor type
;
; This program is used to control a 7 segment display
; The display is connected to PortB
; The program counts from 0 to 9 and then repeats
; each time a switch connected to RA4 is pressed
;
PCL equ 0x02 ; PCL RAM address
PortA equ 0x06 ; PortA RAM address
Switch equ 0x04 ; Switch = PortA pin RA4
PortB equ 0x06 ; PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
Z equ 0x02 ; Status Z flag = bit 2
RP0 equ 0x05 ; Status RP0 bit = bit 5
Pointer equ 0x20 ; display data pointer
DelayA equ 0x21 ; delay counter A byte
DelayB equ 0x22 ; /WD delay counter B byte
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 clrf PortB ; display is blank
 bsf Status,RP0 ; set RP0 for RAM page 1
 movlw b'00011111' ; set all PortA as inputs
 movwf TrisA ; the rest are outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

Loop2 btfsc PortA,Switch ; test the switch state
 goto Loop2 ; it is still open
 call Delay50 ; execute a 50mS delay

Loop3 btfss PortA,Switch ; test the switch state
 goto Loop3 ; it is still closed
 call Delay50 ; execute a 50mS delay

 movf Pointer,w ; put Pointer into W
 call DataTable ; put digit value in W
 movwf PortB ; now display new digit
 incf Pointer ; add 1 to Pointer value
 movlw d'10' ; see if Pointer = 10
 xorwf Pointer,w ; if it is, reset it to 0
 btfss Status,Z ; test Zero bit
 goto Loop2 ; Z = 0, do Loop 2
 goto Loop1 ; Z = 1, do Loop 1

My First PIC Projects - Page 97

;
; -------------------------------
; SUBROUTINE: waste time for 50mS
; -------------------------------
;
Delay50 clrf DelayA ; /R clear DelayA to 0
 movlw 40h ; set DelayB to 40h
 movwf DelayB
Wait1 decfsz DelayA ; subtract 1 from DelayA
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayB ; subtract 1 from DelayB
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay
;
; ---
; SUBROUTINE: lookup table for display data
; ---
;
DataTable addwf PCL ; add W value to PC
 retlw b'00111111' ; 0
 retlw b'00000110' ; 1
 retlw b'01011011' ; 2
 retlw b'01001111' ; 3
 retlw b'01100110' ; 4
 retlw b'01101101' ; 5
 retlw b'01111101' ; 6
 retlw b'00000111' ; 7
 retlw b'01111111' ; 8
 retlw b'01101111' ; 9

 end

This file called countb.asm is available from the software directory and should
be assembled using Mpasmwin.

Start the MicroSim simulator and load the program countb.lst.

Click on Modules - PortA - Switch and a switch circuit will be connected
to Port A.

Now click on Modules - PortB - 7Seg to connect a 7 segment display to
Port B.

Make sure the Display - Visual, menu item is ticked and press the RUN
button. The delay subroutine is bypassed so that you can simulate the code in
this simulator.

After you have seen what happens with this code, stop the simulator and click on
the Display - Visual, menu item and remove the tick. Now when run the

My First PIC Projects - Page 98

simulator in fast mode you will find that the original switch bounce problem is
back. That happens because the delay subroutine has been bypassed.

Close the MicroSim simulator and open the countb.asm source file and remove
the /R Compiler Directive from this code line.

Delay50 clrf DelayA ; /R clear DelayA to 0

This is what the new line should look like.

Delay50 clrf DelayA ; clear DelayA to 0

Save the file and reassemble it.

Start MicroPlay, load countb.lst and then load the circuit file called
switch.cct. You should notice in the Watch Window that RAM register
DelayB is listed in Decimal due to the Compiler Directive in this code line.

DelayB equ 0x22 ; /WD delay counter B byte

This will show you the delay timer as it is counting down. When the simulator is
running, you may keep pressing the switch expecting a result to happen when
the delay routine is active. The processor is not checking the switch during this
time, so you may be fooled into thinking something is wrong.

Press the RUN button and see how the program performs.

After you are satisfied, stop the simulation and close MicroPlay.

If you built up the circuit on the breadboard, try using the MiniPro board with this
code and verify that it now works in the real world. You will not notice the 50mS
debounce delay.

Try modifying the code so that the counter increments only when the button is
pressed, not when it is released. Try changing the delay time to see how short it
can be before the code starts to fail. If the 50mS delay is not long enough, try
lengthening it by initializing DelayB with a higher number.

Make the display automatically increment every 500mS when the switch is held
down.

If you want to try further experimenting, get an extra button and write some code
that increments the counter by pressing one button, and decrements the counter
by pressing the other.

My Next PIC Projects

An introduction to the PIC processor II.

© Bubble Software 2000

mICro’s Next Projects - Page 1

MICRO’s Next Projects

Multiplexing 7 Segment Displays

Relays

PCLATH

FSR Tables

Tables At The Boundary

Using The EEPROM

Keypads

mICro’s Next Projects - Page 2

 Multiplexing 7 Segment Displays

In earlier projects we saw how to drive a 7 segment LED display and make it
count from 0 to 9. This simple approach can be quite adequate for some
projects, but sometimes there is a need to use more than one display. For
example, you may want to display the time, or count the RPM from a car engine,
so these projects will require at least four displays.

This is quite an interesting problem. Four displays have 28 segments to drive so
how do you drive all of these LEDs when the PIC chip only has 13 Input/Output
(IO) pins to use?

The answer is called Multiplexing, and this is where the same segment from
each display is driven by only one IO pin. Each of the segments from one display
is connected to the same segments from all the others.

You would think that all of the same segments will light up on all of the displays
with this approach, but you use a special trick to make sure only one display is
active at any one time.

As you may remember, each of the displays has a common ground connection
and none of the LEDs will light if this connection is broken. You can make use of
this fact to create multiplexed displays.

If only one of displays has a ground connected when the segments are
energised, then only this display will show the information needed, and all the
others will be off. When you want to display the next digit on the next display, it’s
simply a matter of turning off the first display, updating the information on the
segment pins and then connecting the ground for this digit.

If you do this very slowly, you will see that each digit will be displayed for a short
time, but only one at a time. Once the last digit is displayed, you start updating
the first again. If you start doing this faster and faster, pretty soon, your eyes
can’t see the flickering effect, and all the displays seem to on at the same time.

You can drive 4 multiplexed displays from a PIC 16F84 by using 11 IO pins.

7 pins for segments
4 pins to control the ground connections

If you want the decimal point included, then you need 12 IO pins.

The PIC can work at very high speeds and it is no problem whatsoever for it to
drive LEDs like this.

mICro’s Next Projects - Page 3

Here is a circuit for a two
digit multiplexed display.

As you can see, each of
the segment pins are
connected together and
also to the PIC IO pins via
resistors. These resistors
are lower than would
normally be used to drive
LEDs because the displays
are not on all the time and
would appear very dim.
The values chosen will allow the LEDs to be seen while multiplexing, but will not
be so low that the IO pins are damaged by over current if the processor stopped
for some reason and left the LEDs turned on.

Each of the common connections are connected through a transistor switch to
ground. This is a simple way that enables you to switch the displays on and off
as the segments are updated. They are controlled by another two IO pins. This
method is used because the IO pins by themselves do not have the capability to
drive a display module if all of the segments are on at the same time. This would
occur while displaying the number 8.

To make this project work, each of the PortB pins are connected to the displays
in the same way that was described in the counter example described earlier.
The only difference here is that each PortB pin is
connected to two display pins instead of one. Pin RA0 is
connected to the control transistor 1, and RA1 is
connected to the control transistor 2. The decimal points
are connected to RB7. Pins RA2 to RA4 are not used in
this project, so you should set these as outputs as well to
avoid floating inputs.

This is a flow chart that will accomplish a simple
multiplexing task for 2 digits.

As you can see, the basic principle is quite easy. First, set
the port pins so they can perform the required function. In
this case you need to drive the LED segments and the
two control transistors, so these pins need to be set as
outputs.

The data for showing the digit ‘1’ is put on PortB and then
display A is turned on by writing a logic 1 to pin RA0.

mICro’s Next Projects - Page 4

This is normally left on for a short time and then display ‘A’ is turned off again.
Now, the data for showing digit ‘2’ is put on PortB and then display ‘B’ is turned
on by writing a logic 1 to pin RA1. After a short time, a logic ‘0’ is written to PortA
to turn display B off again, and the process repeats.

Shown below is the code that will accomplish this simple task.

 Title "mICro’s Multiplexed 7 Segment Program A"

 list p=16F84 ; processor type
;
; This program is used to multiplex two 7 segment displays
; The display segments are connected to PortB
; Display A is controlled by PortA RA0
; Display B is controlled by PortA RA1
;
; The program shows the number '1' and '2' on the displays
;
PortA equ 0x05 ; /WB PortA RAM address
PortB equ 0x06 ; /WB PortB RAM address
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
RP0 equ 0x05 ; Status RP0 bit = bit 5
DispA equ 0x00 ; Display A = RA0
DispB equ 0x01 ; Display B = RA1
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000h

 clrf PortA ; make sure all displays are off
 clrf PortB ; make sure all segments are off
 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

Loop1 movlw b'00000110' ; segment data for displaying digit '1'
 movwf PortB ; send it to PortB
 bsf PortA,DispA ; (0) turn display A on
 nop
 nop
 bcf PortA,DispA ; (0) turn display A off
 movlw b'01011011' ; segment data for displaying digit '2'
 movwf PortB ; send it to PortB
 bsf PortA,DispB ; (1) turn display B on
 nop
 nop
 bcf PortA,DispB ; (1) turn display B off
 goto Loop1 ; continue and repeat

 end

mICro’s Next Projects - Page 5

You can find this program called mplexA.asm in the software installation
directory. Please assemble it using Mpasmwin.

Start MicroPlay and load the newly created list file. Now load the circuit file
called mplex.cct. You will notice that there are no resistors connected to the
displays. These particular displays have internal series resistors so you do not
need to connect any others, but in the real world you will.

Click on the Watch button to display the Watch Window. This should display the
values for PortA and PortB in binary. These were included because of the /WB
directives next to these values in the source code.

Press the Step button and after the port setup code has executed you will see
how the display data is placed on PortB and then the appropriate display turned
on from RA0 and RA1.

Keep pressing the Step button until you are satisfied in how the code works.

Now press the Run button and you should see how both displays appear to be lit
at the same time. You can speed this process up a little by turning off the Watch
Window.

MPLAB

I think at this stage it would be good to start using MPLAB from Microchip to
develop the software from here on. You should have it installed already so that
you could use Mpasmwin. Make a short cut to the MPLAB software on the
desktop so that you can start it easily.

Start up MPLAB and click on File - Open and select mplexA.asm from the
software installation directory as the file to load. A window should appear with
the source code listed.

Click on Options - Development mode and set the processor to 16F84 then
make sure the MPLAB Sim - simulator item is checked and then press
Reset to close the window.

Now click on Project - Build Node and the software will automatically run
MPASM and assemble your code. A dialog box will appear showing the compiler
configurations. Just use the default values shown and press OK.

Easy isn’t it.

mICro’s Next Projects - Page 6

Click on the Step button on the tool bar at the top of the screen. This is the
button with two feet on it. Each time you do this the code will execute one line at
a time. Press the Reset Processor button to exit this mode.

There are a lot of things you can do in MPLAB and it is quite a large and
complicated program. You will not need to worry too much about all the functions
it can do. Just learn them as you go and remember to look at the help files
supplied.

RELAYS

The PIC has a nominal 25mA current drive capability and this current is quite
good for most low power circuits.

Sometimes a component like a motor or light bulb may need to be controlled by
a PIC output pin and more than likely, these types of components will draw more
than 25mA which can be supplied by the PIC pin.

One way around this problem is to use a relay to switch the high currents
needed. In some cases, a relay can be connected directly to the PIC, but usually
a transistor is used.

A transistor requires only a small base current to let a much larger current flow
through it’s collector. Also, the component that the transistor is switching can
have an operating voltage higher than the 5 volts supplying the PIC. This makes
it an ideal component to control relays from the IO pins of the PIC.

Also, by using a relay to provide a
switching circuit, any dangerous
voltages are isolated from the low
voltage digital circuit that the PIC
operates in.

Here is the relay circuit.

When the relay releases, the sudden
drop in voltage causes a high voltage
to appear across the relay coil
because of the collapsing magnetic
field around it.

mICro’s Next Projects - Page 7

This voltage can destroy the transistor, so some protection is needed for it. This
is the reason the diode is connected across the relay coil. When the high
voltage is produced, the diode conducts and shunts this voltage back through
the relay coil.

The relay supplied with the Experimenters Kit has an operating voltage of 12
volts and a resistance of 400 ohms. The power rail for MicroPro is 18 volts so a
resistor is used in series with the relay coil to remove some of the excess
voltage.

According to Ohms Law, 12 / 400 = 30mA of current should normally flow
through the coil. We need to drop 6 volts across the resistor, so 6 / 0.030 = 200
ohms. The resistor supplied with the kit is 180 ohms which is close enough.

Connect the circuit as shown on a solderless
breadboard, or any way that is suitable. Wires may need
to be soldered to the relay to provide connections.

Here are the relay connections looking from underneath.

Now connect the circuit to the MicroPro board as shown here.

Start the MicroSim Simulator and load the file called relay.lst. Click on
Modules - Project - RealWorld. Run the simulator either by single
stepping or in animated mode and the relay should slowly click on and off.

mICro’s Next Projects - Page 8

Here is the relay.asm file listing.

Title "mICro’s Relay Program"

 list p=16f84 ; processor type
;
; The purpose of this program is to make a RELAY turn on and off
; The RELAY is connected to PortA pin RA0
; The operate rate is 500mS
;
PortA equ 0x05 ; PortA RAM address
RELAY equ 0x00 ; PortA RA0 = bit 0 for RELAY
TrisA equ 0x85 ; TRISA RAM address
TrisB equ 0x86 ; TRISB RAM address
Status equ 0x03 ; Status RAM address
RP0 equ 0x05 ; Status RP0 bit = bit 5
DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte
;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

start bcf PortA,RELAY ; turn on RELAY on RA0
 call Delay500 ; execute a 500mS delay

 bsf PortA,RELAY ; turn off RELAY on RA0
 call Delay500 ; execute a 500mS delay

 goto start ; do this loop forever
;
; --------------------------------
; SUBROUTINE: waste time for 500mS
; --------------------------------
;
Delay500 clrf DelayL ; /R clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
Wait1 decfsz DelayL ; subtract 1 from DelayL
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayM ; subtract 1 from DelayM
 goto Wait1 ; if not 0, goto Wait1
 decfsz DelayH ; subtract 1 from DelayH
 goto Wait1 ; if not 0, goto Wait1
 return ; finished the delay

 end

mICro’s Next Projects - Page 9

Stop the simulator and click on Display - Visual. Now click on the RUN
button to get the simulator to run faster.
Did the relay click on and off?

It probably did, but quite fast.

Start MicroPlay, load the relay.lst file and add the RealWorld component to
the screen . Make sure the MicroPro board is turned on first. Press the RUN
button.

Did the relay click on and off?

Probably not, or it did so in an erratic manner.

The reason the relay is doing this is because the PIC is switching it on and off
very fast and the relay does not have enough time to react. If you look at the
source code you will see the familiar RETURN compiler directive /R inserted in
the delay subroutine.

Open the relay.asm file with NotePad or similar and delete the RETURN
compiler directive and reassemble with MPASM. Now reload it into MicroPlay
and the relay should now click on and off every 600,000 counts or so.

Let’s see how the program operates in real life.

Close any simulators that may be running and then open MicroPro. Click on the
Chip Selector and select USER near the end of the list.

Load the file called relay.hex and press the PROGRAM button. This will write
the relay code file into a special area in the PIC memory.

Press the RUN button and the relay code will execute and the relay will click on
and off about two times per second.

Notice in the source code that the delay counters are defined starting at RAM
address 20h.

DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte

In the 16F84, the general purpose RAM registers start at address 0Ch, but in the
16F873 chip on the MicroPro board, these addresses start from 20h. To be able
to use the RUN feature in MicroPro, you must make sure that the code is
compatible with the 16F873 chip.

mICro’s Next Projects - Page 10

You may have discovered that you had to turn off the MicroPro board to stop the
relay from operating. There is another way you can do this if you are just testing
your code.

Load the file called relay2.hex with MicroPro and program it as shown above.

Now press the RUN button.

The relay will click as before, but now you can stop it by pressing the RESET
button in MicroPro. You can also restart the code by pressing the RUN button
again.

The reason the code acts like this now is because some special code was
inserted into the relay code.

When you press the RESET button, the PC sends a byte of data to the MicroPro
board. The special code detects this and stops your code from executing and
then the MicroPro program takes control. When the RUN button is pressed again,
MicroPro starts executing your code again. Here is the special code that is
needed to do this task.

 btfss PIR1,RCIF ; check for received PC character
 goto NoChar

 movf RCREG,w ; Yes, clear receive buffer
 clrf pclath ; exit run mode
 goto 0h ; jump to start of MicroPro code

When the RUN button is pressed, the PIC can still communicate with the PC via
the serial port. When the RESET button is pressed and the PC sends a byte of
data to the PIC which receives and stores it in the RCREG register. When this
happens, the RCIF flag in the PIR1 register is automatically set to Logic 1.

The code above tests the RCIF flag and if it is Logic 1, then reads the data in the
RCREG and jumps to the code at ROM address 0000h. The code here is the
start of the MicroPro software and therefore it takes over and your code stops.

If the RCIF flag is Logic 0, then your code keeps executing at the NoChar
address label.

mICro’s Next Projects - Page 11

Here is how it looks in the relay2.asm code.

 org 0h ; startup address = 0000

 bsf Status,RP0 ; set RP0 for RAM page 1
 clrf TrisA ; all PortA = outputs
 clrf TrisB ; all PortB = outputs
 bcf Status,RP0 ; set RP0 for RAM page 0

start bcf PortA,RELAY ; turn on RELAY on RA0
 call Delay500 ; execute a 500mS delay

 bsf PortA,RELAY ; turn off RELAY on RA0
 call Delay500 ; execute a 500mS delay

 btfss PIR1,RCIF ; check for received PC character
 goto NoChar

 movf RCREG,w ; Yes, clear receive buffer
 clrf PCLATH ; exit run mode
 goto 0h ; jump to start of MicroPro code
NoChar goto start ; do this loop forever

If you are very observant you will notice that the relay code starts at ROM
address 0000h, so how can the MicroPro code be there as well. The secret is
that your code is loaded at ROM address 0800h not 0000h as you may think.

If you were to program a PIC chip in the normal manner with this code it would
be programmed starting from address 0000h because that is how is was
assembled.

When it is programmed by MicroPro in the special USER mode, the code is
actually programmed into the PIC starting from address 0800h. This is a special
area set aside in the MicroPro PIC for USER programs.

Did you notice this code line from above?

 clrf PCLATH ; exit run mode

If it was not there this line of code will make the PIC jump to address 0800h not
0000h as expected.

 goto 0h ; jump to start of MicroPro code

The PIC has ROM pages which occupy 2048 words each and it is the PCLATH
that controls which page is accessible to GOTO and CALL instructions. These
instructions can only be used within a single ROM page, they can’t be used to
jump to an address in another ROM page. You must specifically set the PCLATH
register if you want to jump to an address that crosses a page boundary.

mICro’s Next Projects - Page 12

The PCLATH register is not used for GOTO CALL instructions in the 16F84, but
it is in the 16F873.

A ROM page is equivalent to 2K of ROM (2048 words).

16F84 only has ROM space 0000 - 03FFh which is only half a ROM page. (1K)

16F873

Page 0 ROM addresses 0000 - 07FFh (2K)
Page 1 ROM addresses 0800 - 0FFFh (2K)

The next section gives an example on how the PCLATH register works.

PCLATH

PCLATH is an acronym for Program Counter LATch High.

It is used in conjunction with GOTO and CALL instructions and provides a
means for the programmer to access any place in the PIC’s code memory. The
reason you need the PCLATH register to do this comes back to simple binary
arithmetic.

Here is the binary representation of the GOTO and CALL instructions.

GOTO

10 1XXX XXXX XXXX

CALL

10 0XXX XXXX XXXX

Each of these instructions is made up of the data that defines the instruction,
101 for GOTO and 100 for CALL.

mICro’s Next Projects - Page 13

The other eleven bits XXX XXXX XXXX make up the data that defines the target
address in the PIC’s code memory for these instructions.

You should be aware by now that each instruction occupies a single ROM
address in the PIC’s memory.

For example:

 org 0000h ; code starts at address 0

Loop call Delay ; execute Delay subroutine
 goto Loop ; repeat forever
 nop
 nop
Delay nop ; very small delay subroutine
 nop
 return

If you assembled this code, the Delay subroutine would start at ROM address
4h, a NOP instruction is at address 5h, and the return instruction will be at
address 6h.

This is how the assembler would define the call Delay instruction, because
the Delay label is at address 0004h.

10 0000 0000 0100

CALL ROM address 4

The HEX code is 2004.

Start up MPLAB and click on File - Open and select romadd.asm from the
software directory as the file to load. A window should appear with the source
code listed.

Click on Options - Development mode and set the processor to 16F873
then make sure the MPLAB Sim - simulator item is checked and then press
Reset to close the window.

Now press ALT F10 and the software will automatically run MPASM and
assemble your code. A dialog box will appear showing the compiler
configurations. Just use the default values shown and press OK.

mICro’s Next Projects - Page 14

Open the file called romadd.lst and see that the addresses for the instructions
mentioned were as stated. Look at the HEX code for the GOTO and CALL
instructions and verify that their target addresses are correct.

Click on the Step button on the tool bar at the top of the screen. You will see the
code execute line by line and how the CALL and GOTO instructions work.

Close the file(s) and then load and assemble romadd2.asm.

You should see a warning message like this appear in the Build Results window.

Message[306] <filename> Crossing page boundary -- ensure page bits are set.

This message is telling you that the target address for a CALL or GOTO
instruction has crossed into another ROM page and you should make sure that
the PCLATH register has been set correctly.

If the PCLATH register has not been set correctly, then your code will not work
as you think.

One other thing to note here, is that your code will assemble with no errors
whatsoever, but it will not work in the real world or in a simulator.
Messages are not errors, they are there to offer a reminder that something may
be wrong with your code.

Here is the listing of romadd2.asm.

 org 0000h ; code starts at address 0

Loop call Delay ; execute Delay subroutine
 goto Loop ; repeat forever
 nop
 nop
Error1 goto Error1
;
; Delay subroutine starts at 0800h
;
 org 0800h
;
Error2 goto Error2
 nop
 nop
 nop

Delay nop ; very small delay subroutine
 nop
 return

Now single step this code and see what happens.

mICro’s Next Projects - Page 15

You should see that the code is stuck on this line at address 4h

Error1 goto Error1

Before we go any further, open both of the list files romadd.lst and
romadd2.lst.

Look at the HEX code that was generated for this code line in both files.

Loop call Delay ; execute Delay subroutine

It should be 2004. In other words CALL ROM address 4.

If you look down the romadd2.lst file, you will see the address where Delay
appears is actually 0804. So why didn’t the subroutine execute?

Have a look at the binary equivalent of 0804.

0000 1000 000 0100

You need at least 12 bits of information to represent this address.

1000 0000 0100

This amount of bits cannot fit into the CALL instruction because there is only
enough room for 11 bits of address information available.

In this case the highest bit is ignored by the assembler, so address 0804
becomes 0004, and this information is placed into the CALL instruction. That is
the reason why both of the CALL Delay instructions from each file generate the
same HEX code.

1000 0000 0100 (12 address bits)

after assembly, becomes

000 0000 0100 (11 address bits)

1111 0000 0000 0100 (16 address bits)

after assembly, becomes

000 0000 0100 (11 address bits)

mICro’s Next Projects - Page 16

This is where the ROM page concept comes from. Eleven bits of information can
represent 2048 different addresses.

See how ROM page 1 starts at address 0800.

Page 0 ROM addresses 0000 - 07FFh (2K)
Page 1 ROM addresses 0800 - 0FFFh (2K)

OK, so there must be a way of jumping to code in different ROM pages or there
is no reason to have the memory available. This means that the PIC must be
able to access more address bits from somewhere to make up the bigger
address values.

The PIC’s we are talking about here have a Program Counter that is 13 bits
wide, which means that it can execute code at any addresses ranging from 0 to
8191.

If the GOTO and CALL instructions only have 11 bits available for addresses,
where do the other 2 bits come from?

These 2 extra bits come from the PCLATH register. Bits 3 and 4 to be exact.

 PCLATH 0000 0000
 bits 7654 3210

Every time a GOTO or CALL instruction is executed these two bits are added to
the 11 address bits from the instructions to make up the 13 bit number that is
placed into the Program Counter.

Example: assuming the Delay label is at ROM address 0804:

PCLATH = 0000 0000

 call Delay

PCLATH bits 4 and 3 = 00.

Delay address from instruction = 000 0000 0100.

Total address = 0 0000 0000 0100 (13 bits)

mICro’s Next Projects - Page 17

Therefore the Program Counter = 0004 and the code at this address executes,
but it is not where we intended.

PCLATH = 0000 1000

 call Delay

PCLATH bits 4 and 3 = 01.

Delay address from instruction = 000 0000 0100.

Total address = 0 1000 0000 0100 (13 bits)

Therefore the Program Counter = 0804 and the code at this address executes
correctly.

This is how the PCLATH bits 4-3 should be set to jump to the different ROM
pages.

00 Page 0 0000 - 07FFh 2K
01 Page 1 0800 - 0FFFh 2K
10 Page 2 1000 - 17FFh 2K
11 Page 3 1800 - 1FFFh 2K

If you look at the largest PIC memory in this series of chips, you will see that it is
8K which spans 4 ROM pages. Can you guess why?

So, what changes are needed to make the code work?

All you have to do is set the PCLATH so that bits 3 and 4 point to the correct
ROM page where the target GOTO or CALL address is located.

To help with this, there is an assembler directive which gets the upper 8 bit value
of a ROM address.

Example:

 movlw High(Delay)

In the program called romadd2.asm, the Delay subroutine starts at 0804h.

mICro’s Next Projects - Page 18

This instruction tells the assembler to look up the symbol table for the Delay
lable and get it’s value. In this case 0804h. It then gets the upper byte of this
value which is 08h and places it in the W register.

When we then write this value to the PCLATH register like this, it will be set at
the correct ROM page.

 movwf PCLATH

PCLATH = 0000 1000

If you used these instructions with the romadd.asm code, the data loaded into
the PCLATH will be zero.

The Delay label in this case is at address 0004h, therefore the upper byte =
00h.

Here is the modified code. Type the extra lines into the romadd2.asm file, re-
assemble, and single step it to verify that it now works.

Loop movlw High(Delay) ; upper byte address of Delay
 movwf PCLATH
 call Delay ; execute Delay subroutine
 goto Loop ; repeat forever
 nop
 nop
Error1 goto Error1
;
; Delay subroutine starts at 0800h
;
 org 0800h
Error2 goto Error2
 nop
 nop
 nop

Delay nop ; very small delay subroutine
 nop
 return

Did it actually work properly this time?

If all went according to my devious little plan, the code should have ended up
locked in a loop at address 0800h.

Error2 goto Error2

mICro’s Next Projects - Page 19

Do you know why it didn’t go back to the start of the code when the code line
goto Loop executed?

The Loop label is at address 0000h and the Error2 label is at address 0800h.
GOTO and CALL instructions both use the PCLATH register <4-3> bit contents.

Which ROM page was the PCLATH set to after the subroutine returned and the
goto Loop code line executed?

It was still pointing to ROM page 1 wasn’t it.

goto Loop in binary is 10 1000 000 000

The PCLATH value was 0000 1000, so this is the complete ROM address that
the PIC computed for the goto Loop instruction.

0 1000 0000 0000

This means goto address 0800h, not 0000h where we wanted.

For correct program flow, you needed to reset the PCLATH to the ROM page
where the GOTO address is intended, in this case ROM page 0. You can do that
the same way as before

 movlw High(Loop)
 movwf PCLATH

Or, because you definitely know it is ROM page 0, you can simplify the code like
this.

 clrf PCLATH
If you don’t know which ROM page the target address is located, use the first
method to automatically get the value, or you can also look at the *.lst files to
see the address where the label is and specifically set the PCLATH with the
upper byte value.

Here is the modified listing. Add the extra line, re-assemble and step through the
code again. This time it should work properly.

Loop movlw High(Delay) ; upper byte address of Delay
 movwf PCLATH
 call Delay ; execute Delay subroutine
 clrf PCLATH ; ROM page 0
 goto Loop ; repeat forever
 nop
 nop
Error1 goto Error1

mICro’s Next Projects - Page 20

When single stepping, view the contents of the W register when the movlw
High(Delay) instruction executes to verify that it does equal the upper byte
value of the Delay label address.

Click on Window - Special Function Registers.

During single step, registers are highlighted in red when their values change.

If you ever write large programs, be sure to take notice of the assembler warning
messages. They are there to help you.

If your code occupies more than a single ROM page, then you must be aware of
the value of the PCLATH register when using CALL or GOTO.

One last thing.

Did you notice that the PCLATH register did not need to be changed for the
RETURN instruction even though the code jumped back to ROM page 1 from
ROM page 0?

The RETURN instruction pulls a complete 13 bit value from the STACK and
places it in the Program Counter, therefore the PCLATH value is not used.

To view more on ROM addressing, please look at the ROM Page and GOTO -
CALL sections in MicroPost and the MicroPro help file under USER PROGRAMS.

There is also some information in the supplied PDF files for the 16F84 and
16F873/4/6/7 chips.

mICro’s Next Projects - Page 21

FSR TABLES

Usually, instructions are executed in the Direct Addressing mode which simply
means that the instructions are acting directly on a RAM address.

Example.

 clrf PCLATH
 movwf PORTA
 addwf 0x20
 xorwf MathReg

FSR stands for File Select Register and it’s purpose is to allow the programmer
to use instructions in the Indirect Addressing mode.

In this mode of operation, the instructions don’t communicate directly with RAM
addresses. Instead the RAM address data is fetched from the information stored
in the FSR register.

Now at this stage you might be thinking, “That sounds great, but what good is
it?”

Well, suppose your application needs to specifically initialise a section of RAM
at power up so that all values are 0x00. It may be that if you didn’t do this your
application may crash at some stage or give erroneous results.
For instance, this may be the first piece of information that a series of displays
show when the project is first turned on.

Let’s say you need to clear 4 RAM locations. That’s quite easy, and you can do it
like this.

 clrf DisplayA
 clrf DisplayB
 clrf DisplayC
 clrf DisplayD

What happens if you need to clear 20, 30 or even 40 RAM registers?

It would become quite wasteful of the memory space if you had to write a clrf
instruction for each of these registers.

This is a good example of how the FSR register and Indirect Addressing mode
comes in handy.

mICro’s Next Projects - Page 22

The FSR and Indirect Addressing work in conjunction with another register
called the INDIRECT FILE register or as it is more commonly called, INDF. This
register is located at RAM address 0h, and you cannot physically read or write
data to this register.

Well, what is the good is that?

Here is where the INDIRECT part of the addressing takes place.

When you write data to the INDF register, the processor gets the value stored in
the FSR register and uses that as the RAM address to store the new information
in.

When you read data from the INDF register, the processor gets the value stored
in the FSR register and uses that as the RAM address to get the new information
from. In actual fact the data stored in the FSR register is called a POINTER.

It’s like saying...

Hey, I need to deliver a package to someone in a multi-storey building but I don’t
know where there are, so I’ll go and ask the doorman for the information.

The doorman in the PIC’s case is the FSR.

Your code can be made to run a lot more efficiently by using the FSR to do some
processing on a block of RAM locations, and it also conserves the limited code
space which is a must in the microcontroller world.

Here is an example of clearing a block of 10 RAM registers by using the FSR.

Suppose the first RAM location of the block starts at address 32dec, (20h). That
means the last address in the block is 41dec, (29h).

Maybe this needs some clarification.

32 + 10 = 42, so why does that last address in the block only equal 41?

You have to remember that address 32 is used as the first location in the block,
which means there are another 9 locations used, so the last location is at
address 41. This can be quite confusing at times. Count it out on your fingers to
verify it.

mICro’s Next Projects - Page 23

The first thing to do with our routine is to set the FSR to point to the first RAM
address of the block.

 movlw d’32’ ; set start address
 movwf FSR

Now this line clears the RAM register who’s address is stored in the FSR.

 clrf INDF ; clear the RAM location

From here on we could just simply increment the FSR and clear the next RAM
location, increment the FSR, clear, increment etc. This would do the task we
want, but it is even less efficient that the first method we tried.

The most efficient way in this case, is to set up a loop. After we have cleared the
last RAM location in the block, the loop terminates. This will occur when the FSR
value is one greater that the last RAM location. Look at the routine to see how
this works.

clear clrf INDF ; clear the RAM location
 incf FSR ; set ready for next location
 movlw d’42’ ; test if finished
 xorwf FSR,W
 btfss STATUS,Z
 goto clear ; not yet, keep going

Why didn’t we use movlw d’41’ to test for the last RAM location?

Because then the last location in the block would not have been cleared.

When the last RAM address, 41, is cleared, the FSR in incremented and then
equals 42, which ends the loop.

Make sure you understand what is happening in that routine before proceeding.

It seems a fiddly thing to do when we humans have to do the mental arithmetic to
find the value for the end of the RAM block, so wouldn’t it be nice if we didn’t
have to worry about doing this.

Well, there is a way. The assembler let’s you do some basic arithmetic within
your code, and in this way it does the math for you.

mICro’s Next Projects - Page 24

Here is another way of doing the same task with 10 address locations in the
block.

clear clrf INDF ; clear the RAM location
 incf FSR ; set ready for next location
 movlw d’32’ + d’10’ ; test if finished
 xorwf FSR,W
 btfss STATUS,Z
 goto clear ; not yet, keep going

Hang on a minute, we can make this even easier.

Remember, that you have to define where in the RAM memory that this block
starts from. In this case we said it starts at address 32dec, (20h).

You can define the block of RAM at the start of your code with a CBLOCK
statement and use labels instead of actual numbers. This takes the pressure off
the programmer who now, doesn’t need to worry about the math.

 CBLOCK d’32’

RAMBlock: d’10’

 ENDC

This tells the compiler to reserve 10 bytes of RAM starting at address d’32’. It
can also be written in HEX if you like.

 CBLOCK 0x20

RAMBlock: 0Ah

 ENDC

You can also have other variables entered into the block just by adding labels.
These can appear anywhere in the CBLOCK statement and you can enter any
amount as long as there is sufficient RAM available in the chip you are using.
The 10 bytes will always be set aside for our block of RAM and we don’t need to
know what addresses they are located at.

In the past, this is how we have declared RAM variables.

Data1 equ 20h ; data for display 1
Data2 equ 21h ; data for display 2
Data3 equ 22h ; data for display 3
Data4 equ 23h ; data for display 4
RAMBlock equ 24h ; 10 byte block of data
Flash equ 2Fh ; flash counter

mICro’s Next Projects - Page 25

You can see that we have had to mentally work out what address Flash needs
to occupy so that it doesn’t get muddled up in the RAMBlock of 10 bytes that we
need.

With the CBLOCK method, it becomes much easier because we let the
assembler worry about assigning RAM addresses and making it all fit properly.
In this case, Data1 occupies RAM address 0x20, Data2 occupies 0x21, etc.,
which is the same as above.

 CBLOCK 0x20

Data1 ; data for display 1
Data2 ; data for display 2
Data3 ; data for display 3
Data4 ; data for display 4
RAMBlock:0Ah ; 10 byte block of data
Flash ; flash counter

 ENDC

Now you can rewrite the clearing code without worrying about the RAM
addresses that the registers occupy. However, you still need to know there are
10, (0Ah) bytes to clear in the block.

 movlw RAMBlock ; set start address
 movwf FSR
clear clrf INDF ; clear the RAM location
 incf FSR ; set for next location
 movlw RAMBlock + 0Ah ; test if finished
 xorwf FSR,W
 btfss STATUS,Z
 goto clear ; not yet, keep going

Knowing tricks like this becomes important when you start to write reasonably
complicated code, because it lowers the chance of making mistakes, makes your
code easier to understand, and makes it easier for you to write code.

There are lots of compiler directives in MPASM so don’t be afraid to look through
the help file supplied with MPLAB to check them out.

Open MPLAB and the file called block.asm. Click on Options -
Development mode and set the processor to 16F84 then make sure the MPLAB
Sim - simulator item is checked and then press Reset to close the window.

mICro’s Next Projects - Page 26

One other time saving directive you can use is the INCLUDE statement which
you will see at the top of the code listing. Do you notice that the FSR, STATUS,
INDF and the Z flag are not defined anywhere?

The INCLUDE "P16f84.inc" statement tells the assembler to find the file
called p16F84.inc and assemble it as well as this code file. Inside this file are
all the register and bit definitions for the PIC16F84 chip. This saves us having to
type them out each time we write code for the 16F84 chip. These files are
located in the same directory where MPLAB is located. They are just text files so
you can view the contents of them by using NotePad.

You may notice that the Mnemonics have been written in CAPITALS. That is the
way they are defined in the INCLUDE files, and the source files will not compile
properly if the labels don’t match exactly. There is a Case Sensitivity option that
you can disable in the dialog box that appears when you assemble each file.

OK. Now type ALT F10 and press OK to assemble the code.

Click on Window - File Registers to display the list of RAM locations. You
may need to size the window so that you can easily see RAM address 0020 to
0060. Click on Window - Special Function Registers and size the
window so that you can easily see the FSR register.

Now single step the code and watch how the code executes. You will see each
RAM location change to RED as the value 00h as is written to it by Indirect
Addressing. When this has completed, you will see the value 01h written to each
location and then the process continues. Notice that the FSR value equals the
value of the RAM register being written to.

What happens if you changed this line of code

xorwf FSR,W

to this

xorwf FSR

Try it and see. Did the code work properly?
Try to find out why. As a hint, where did the result of the xorwf instruction end
up and what important value got changed as a consequence?.

Change the values of the size and start address of the RAM block and see what
difference it makes.

mICro’s Next Projects - Page 27

Try writing or reading a value directly to RAM address 0h, which is the INDF
register. I’ll bet you can’t.

You can read or write data to any RAM address in the 16F84 when you are
using indirect addressing. That is because the FSR can hold address values
from 0 - 255 which covers the whole address space.

Tables At The Boundary

Earlier on we looked at using the ADDWF PCL instruction to access different
values in a lookup table, and this was the general format we used.

DataTable addwf PCL ; add W value to PC
 retlw b'00111111' ; 0
 retlw b'00000110' ; 1
 retlw b'01011011' ; 2
 retlw b'01001111' ; 3
 retlw b'01100110' ; 4
 retlw b'01101101' ; 5
 retlw b'01111101' ; 6
 retlw b'00000111' ; 7
 retlw b'01111111' ; 8
 retlw b'01101111' ; 9

This method worked very well for the previous programs you looked at and will
do well for most of the software you write. Unfortunately, this method does not
always work, and in this section we will find out why.

Start MPLAB, load the program called pages.asm, and assemble it.(Alt F10)
This software is very similar to the program that displays the values 0 - 9 on a 7
segment display. The only difference in the code is where the DataTable
subroutine is located in ROM, and there is no Delay subroutine included.

Begin stepping through the code and see if all of the digit information gets sent
to PORTB for the display.

mICro’s Next Projects - Page 28

What happened when the program tried to get the information for digit 6 from the
DataTable subroutine?

The program should have started from the first code line again which was wrong.
This is a disaster, because this is not what we wanted and our program just
crashed.

The trick now is to find out why.

Here is some of the list file code that was generated after you assembled
pages.asm. You can view this entire file by loading pages.lst into MPLAB.

0000 00020 org 0h

0000 1683 00022 bsf STATUS,RP0
0001 0185 00023 clrf TRISA
0002 0186 00024 clrf TRISB
0003 1283 00025 bcf STATUS,RP0
0004 01A0 00027 Loop1 clrf Pointer
0005 0820 00028 Loop2 movf Pointer,w
0006 20F9 00029 call DataTable
0007 0086 00030 movwf PORTB
0008 0AA0 00031 incf Pointer
0009 300A 00032 movlw d'10'
000A 0620 00033 xorwf Pointer,w
000B 1D03 00034 btfss STATUS,Z
000C 2805 00035 goto Loop2
000D 2804 00036 goto Loop1

00F9 00038 org 0x00F9

00F9 0782 00053 DataTable addwf PCL
00FA 343F 00054 retlw b'00111111' ; 0
00FB 3406 00055 retlw b'00000110' ; 1
00FC 345B 00056 retlw b'01011011' ; 2
00FD 344F 00057 retlw b'01001111' ; 3
00FE 3466 00058 retlw b'01100110' ; 4
00FF 346D 00059 retlw b'01101101' ; 5
0100 347D 00060 retlw b'01111101' ; 6
0101 3407 00061 retlw b'00000111' ; 7
0102 347F 00062 retlw b'01111111' ; 8
0103 346F 00063 retlw b'01101111' ; 9

The list file is divided into columns. The first shows the ROM address that this
line of code is assigned when the chip is programmed. The second shows the
HEX code that was generated from the source on this line. Then there is the text
line number and finally the source code you wrote.

mICro’s Next Projects - Page 29

From this listing you can clearly see how the ORG statements change the
assemblers address counter. For example, the ORG 0x00F9 changes the
address counter to 00F9h and this new ROM address is where the DataTable
subroutine code will start from when it is programmed into the chip.

So far so good?

If you are not sure how this process works, start the MicroPro programmer
software and select the 16F84 chip.

Now load the pages.hex file that you just created by assembling pages.asm,
and you should see that each HEX code value is placed into the programmer
listing at the same addresses that appear in the pages.lst file.
Scroll down the HEX listing and you will see the code for the DataTable
subroutine and how it begins at address 00F9h. Here, it should have the HEX
code value of 0782 which is the value that the assembler created when it read
this source code line.

DataTable addwf PCL ; add W value to PC

OK then. Now that you understand that process, why didn’t the program work?

The answer lies in the fact that the PIC is an 8 bit device. Therefore the PCL
register and all the others can only hold values from 0 - 255. (00h - FFh)

Hang onto your seats here, because we have to do a bit of math.

Look at the highlighted ROM addresses in the DataTable code.

00F9 0782 00053 DataTable addwf PCL
00FA 343F 00054 retlw b'00111111' ; 0
00FB 3406 00055 retlw b'00000110' ; 1
00FC 345B 00056 retlw b'01011011' ; 2
00FD 344F 00057 retlw b'01001111' ; 3
00FE 3466 00058 retlw b'01100110' ; 4
00FF 346D 00059 retlw b'01101101' ; 5
0100 347D 00060 retlw b'01111101' ; 6
0101 3407 00061 retlw b'00000111' ; 7
0102 347F 00062 retlw b'01111111' ; 8
0103 346F 00063 retlw b'01101111' ; 9

The PCL register is always the same the lower 8 bit value of the Program
Counter which means that it equals F9h when the subroutine starts. The W
register value is added to the PCL value, and this changes the value of the
program counter. This, as we have seen before, provides a neat way of
retrieving data from a lookup table.

mICro’s Next Projects - Page 30

Let’s look again at how the digit 5 data is accessed.

PCL = F9h W = 5h

As the PIC is executing the addwf PCL instruction, it increments the Program
Counter so it can start fetching the next instruction.

New PCL value FAh

Now the W register value is added to the PCL value.

New PCL value FAh + 5h = FFh (255dec)
As the lower 8 bits of the Program Counter always equal the PCL value, it now
equals 00FFh.

The retlw b’01101101’ instruction now executes and returns the 7 segment
data for digit 5.

Now, what happens when we want to display digit 6.

PCL = F9h W = 6h

As the PIC is executing the addwf PCL instruction, it increments the Program
Counter so it can start fetching the next instruction.

New PCL value FAh

Now the W register value is added to the PCL value.

New PCL value FAh + 6h = 00h (0dec)

As the lower 8 bits of the Program Counter always equal the PCL value, it now
equals 0000h.

Now this instruction executes.

0000 1683 00022 bsf STATUS,RP0

Whoa there!! Hang on a minute. That’s not right.

Well yes, it is correct, but the PIC didn’t do anything wrong and it followed the
code we wrote to the letter. Unfortunately, we made a mistake in the way we
wrote the code.

mICro’s Next Projects - Page 31

You can see that the PCL value “wrapped around” back to zero after the W
register value was added. This happened because you cannot store a value in a
register that is greater than 8 bits.

FAh + 6h = 100h (250 + 6 = 256)

That is a nine bit number 1 0000 0000

As the result of the addition can only be 8 bits long, the extra ‘1’ disappears and
the final result equals 0000 0000, or zero.
The same happens for larger numbers.

FFh + FFh = 1FE (510dec)

That is a nine bit number 1 1111 1110

As the result of the addition can only be 8 bits long, the extra ‘1’ disappears and
the final result equals 1111 1110, or FEh. (254dec)

When the subroutine tried to get the 7 segment data for digit 6, the Program
Counter was incorrectly set to 0000h, which is back at the start of the program.
Clearly, this is an error.

If you have not understood what has been said up to this point, please go over it
again before moving on.

To overcome this problem, we can proceed two ways. One way is to make sure
that any of our lookup tables do not appear in any ROM addresses greater than
00FFh. This may be good enough for a lot of programs, but sometimes it isn’t.

What if you have a lot of data tables, or just one really big one that has more
than 256 elements listed. In these cases, you have to learn about another trick
when using PIC chips.

We saw earlier that the PCLATH register is used to access different ROM pages
when using the GOTO and CALL instructions. This register is also used when
any instruction causes the PCL register contents to be changed.

addwf PCL
subwf PCL
incf PCL
etc

mICro’s Next Projects - Page 32

When the PCL register is changed, so too does the lower 8 bits of the Program
Counter. In addition, the lower 5 bits of the PCLATH register are used as the
new upper 5 bits of the Program Counter which gives us a new 13 bit value.

This may seem a little bit tricky, but it is quite simple and we can use this
knowledge to create lookup tables that contain more than 255 elements, or ones
that can be located anywhere in memory.

When the PIC powers up, some internal registers are set to a RESET value. The
PCLATH is one of those registers and it’s value is set to zero when power is first
applied. That is the reason why the pages.asm program worked with Pointer
values less than 6.

Imagine, if the PCLATH was set to 1 on powerup.

Load the program called pages2.asm into MPLAB and assemble it.(ALT F10)

This program sets the PCLATH value to 1 before anything else. Single step the
code and the DataTable subroutine will not work at all. The Program Counter
will be set to an address where there is no code and an error window will be
displayed.

The way around this is to set the PCLATH register in such a way that the
Program Counter is always set to the correct address when the PCL register is
changed.

Using the HIGH and LOW compiler directives is one way this can be achieved.
You should remember that this gets the upper or lower 8 bits of any 16 bit value.

We want to make sure digit 6 works, so let’s use that as an example.

Use the HIGH directive to get the upper 8 bits of the ROM address where the
DataTable subroutine is located.

 movlw High(DataTable)

mICro’s Next Projects - Page 33

Here, the assembler finds out where the DataTable subroutine ends up in
ROM memory and makes sure the W register is loaded with the upper 8 bits of
this value. The routine is located at address 00F9h, so code is generated to
make sure the W register is set to 00h. This value is placed into the PCLATH
register.

Now, get the table offset, in this case it is the Pointer value, and add 1 to it.

We now add this to the lower 8 bits of the ROM address where the DataTable
subroutine is located.

 addlw Low(DataTable)

The assembler finds out where the DataTable subroutine ends up in ROM
memory. The routine is located at address 00F9h, so code is generated to make
sure the W register is added to the value F9h.

After we do that, the CARRY flag in the STATUS register will be set to Logic 1 if
the value exceeds 255, or it will be cleared to Logic 0 if the value does not
exceed 255. If the CARRY flag is set after the addition, we increment the
contents of the PCLATH register.

After doing this, the PCLATH will be set to the correct value to access the data
element we are looking for. Also, data tables can be placed anywhere in memory
and the PCLATH will be set correctly each time.

One limitation of this method, is that you are still limited to tables which have 254
elements in them. If you had more, then you need to do some 16 bit arithmetic to
calculate the PCLATH value which isn’t covered in this topic. (It’s still easy
though.)

Let’s do the math for the above example.

The DataTable subroutine is located at address 00F9h so W is set to 00h by
the assembler. This is then placed into the PCLATH register.

PCLATH = 0

We now get the offset (Pointer) value and add 1 to it.

6 + 1 = 7

mICro’s Next Projects - Page 34

This value is now added to the lower 8 bits of the DataTable subroutine
address.

7 + F9h = 100h

The result if greater than FFh (255) so the CARRY flag is set. This means we
have to increment the PCLATH by 1.

PCLATH = 1

The PCLATH is now set to the correct value and the data for digit 6 will be
returned properly.
Here is the code to set the PCLATH correctly.

 movlw High(DataTable)
 movwf PCLATH
 incf Pointer,W
 addlw Low(DataTable)
 btfsc STATUS,C
 incf PCLATH

You can think of setting the PCLATH value in these terms also if you like.

If the PCLATH = 0, addwf PCL accesses memory 0h - FFh.
If the PCLATH = 1, addwf PCL accesses memory 100h - 1FFh.
If the PCLATH = 2, addwf PCL accesses memory 200h - 2FFh.
If the PCLATH = 3, addwf PCL accesses memory 300h - 3FFh.
etc.

It’s not just ADDWF instructions, it’s any instruction that changes the PCL.

Load the file called pages3.asm into MPLAB and assemble it. Now load
pages3.lst and verify that movlw High(DataTable) and addlw
Low(DataTable) actually do generate the correct code. The lower 8 bits of the
HEX code will be the value used.

0007 3000 00031 Loop2 movlw High(DataTable)

000A 3EF9 00034 addlw Low(DataTable)

00F9 0782 00063 DataTable addwf PCL

Now single step through the code and verify that it now works. Click on Window
- Special Function Registers to view the PCLATH.

mICro’s Next Projects - Page 35

Try changing the org 0x00F9 line to different values and make sure that the
code still works. You will see the different values calculated by the High and
Low directives in the new list files that are created.

Try org 0x0345h

Try 0x03FEh. You will find that the code compiles ok, but you get warnings like
this if the assembler is set to compile for a 16F84.

Warning[220] C:\...PAGES3.ASM 65 : Address exceeds maximum
range for this processor.

That is because the assembler is trying to fit code into addresses that do not
exist for the 16F84.
There are some animated tutorials covering this subject in the MicroPost
program under the headings Modify PCL and GOTO CALL PCL.

Using The EEPROM

The EEPROM memory is different than normal RAM memory because the data
that is stored there stays intact even when power is removed. This can be very
helpful when you want to keep special data for your program. As an example,
the EEPROM data could be used for the odometer information on a
speedometer, or it could be a value that your program uses for calibration
purposes.

Using the EEPROM memory is very easy but you must always use a special
sequence of instructions to read or write to it.

This section deals with reading and writing to the EEPROM memory on a
PIC16F84.

There are four registers used to enable you to access the EEPROM memory.
These registers are called:

 EEDATA
 EEADR
 EECON1
 EECON2

mICro’s Next Projects - Page 36

The EEDATA register is used as a temporary register to hold the data when you
access the EEPROM.

The EEADR register is used to hold the address of the EEPROM location that
you want to read from or write to.

The EECON1 register has all the control bits necessary to enable you to read
and write to the EEPROM memory.

The EECON2 register is a special register that enables you to write the data.

The easiest way to explain these registers is to use an example so here we go.

Reading

Reading is quite an easy task. Now you can’t just jump straight in and say, hey I
want to read from the EEPROM. As you might expect, you have to let the PIC
know which memory location you have to read from because there are 64 of
them available for storage.
The first thing you must do then is write the address of the location you wish to
read from into the EEADR register. Say you want to read from the second
location. In this case you can use these instructions.

 movlw 1h
 movwf EEADR

Hold on a minute. We were going to read the second EEPROM location, so why
use 1h as the value? Remember, address 0, (0h) is the first location, and
address 63, (3Fh) is the 64th location. All memory is zero based, which means it
doesn’t start from 1.

Here are the bits that live in the EECON1 register which is at RAM address 88h.

EECON1

BIT NUMBER 7 6 5 4 3 2 1 0

FUNCTION - - - EEIF WRERR WREN WR RD

Now to tell the PIC that you actually want to read a value from EEPROM, you
need to set one of the special control bits in the EECON1 register. This special bit
is called RD, (BIT 0) which is short for READ.

mICro’s Next Projects - Page 37

The EECON1 register is located in RAM Page 1, so before accessing it, you need
to set the RP0 bit in the STATUS register.

 bsf STATUS,RP0 ; RAM Page 1

To read the location, just set the RD bit to Logic 1.

 bsf EECON1,RD ; read the data

When you set the RD bit to Logic 1, the PIC automatically looks at the value
stored in EEADR and uses it as the EEPROM memory address from which to
read from. After it has read the location, it places the data into the EEDATA
register, and when this has been completed the RD bit gets set back to Logic 0
again. This all happens during the bsf EECON1,RD instruction.
The data is now available in the EEDATA register and you can do what you want
with it. This register is located in RAM page 0, so you must clear the RP0 bit in
the STATUS register before you access it.

 bcf STATUS,RP0 ; RAM Page 0
 movf EEDATA,W

Here is the full list of instructions needed to read from the EEPROM.

 movlw 1h
 movwf EEADR
 bsf STATUS,RP0 ; RAM Page 1
 bsf EECON1,RD ; read the data
 bcf STATUS,RP0 ; RAM Page 0
 movf EEDATA,W

You can make this procedure into a SUBROUTINE quite easily, and all you have
to do to use it is set the W register with the EEPROM address and after the
subroutine executes, the data is returned in the W register.

;
; SUBROUTINE: READ FROM EEPROM
; On entry, W = address to read from
; On exit, W = data that was read
;
EepRead movwf EEADR
 bsf STATUS,RP0 ; RAM Page 1
 bsf EECON1,RD ; read the data
 bcf STATUS,RP0 ; RAM Page 0
 movf EEDATA,W
 return

mICro’s Next Projects - Page 38

To use this subroutine just set the W register with the address data and call it.
Suppose you want to read all of the EEPROM and write the data to PORTB. Here
is a way you could do that.

 clrf EEADR ; set for first address
EEloop call EepRead ; get the data
 movwf PORTB ; send to PORTB
 incf EEADR ; set for next address
 movlw d’64’ ; test for last address
 xorwf EEADR,W
 btfss STATUS,Z
 goto EEloop ; not last

; all done - continue with other code

The EepRead routine has the opportunity to fail if you are not careful. Can you
see a reason for this?
What happens if the RP0 bit in STATUS is set to 1 when the subroutine is called?
The EEADR register will not be accessed, and the EECON2 register will be.

In this code we are using both RAM pages, so you must always make sure you
are in the correct one.
If you cannot be sure what RAM page you will be in when the EepRead
subroutine is called, clear the RP0 bit inside the subroutine before doing
anything else, like this.

;
; SUBROUTINE: READ FROM EEPROM
; On entry, W = address to read from
; On exit, W = data that was read
;
EepRead bcf STATUS,RP0 ; RAM Page 0
 movwf EEADR
 bsf STATUS,RP0 ; RAM Page 1
 bsf EECON1,RD ; read the data
 bcf STATUS,RP0 ; RAM Page 0
 movf EEDATA,W
 return

This is a really good example of seeing the RP0 bit in action. You can see how
many times it was used and this routine would definitely not work if you ignored
it.

mICro’s Next Projects - Page 39

Writing

Writing to the EEPROM memory is a little bit more difficult. You must write a
special sequence of instructions every time you want to write data, and if you fail
to do this, you will not be able to store the data at all.

The first thing you must do is set the address of the location you wish to write to
into the EEADR register, and you must also set the value of the data that is going
to be stored into the EEDATA register. Say you want to write 0x45 to the first
location. In this case you can use these instructions.

 movlw 0h
 movwf EEADR
 movlw 0x45
 movwf EEDATA

There is no strict order for setting these registers.

Now to tell the PIC that you actually want to write a value to EEPROM, you need
to set some of the special control bits in the EECON1 register.
One of these special bit is called WT, (BIT 1) which is short for WRITE, and the
other is called WREN, (Bit 2) which is short for WRITE ENABLE.
These bits sound much the same, but have quite different functions.
Here are the bits that live in the EECON1 register which is at RAM address 88h.

EECON1

BIT NUMBER 7 6 5 4 3 2 1 0

FUNCTION - - - EEIF WRERR WREN WR RD

Before writing can take place, the WREN bit must be set to Logic 1. If this bit is
Logic 0, then the PIC will not write any data even if it has been told to.

The EECON1 register is located in RAM Page 1, so before accessing it, you need
to set the RP0 bit in the STATUS register.

 bsf STATUS,RP0 ; RAM Page 1

To enable writing, just set the WREN bit to Logic 1.

 bsf EECON1,WREN ; enable EEPROM writes

To make the PIC start writing data to the EEPROM, you MUST use these
instructions, and they MUST be written exactly like this and in the same order.

mICro’s Next Projects - Page 40

In conjunction with the WREN bit, this sequence is a safe guard against
erroneous writing. The EECON2 is also in RAM page 1 and the RP0 bit is already
set previously so there is no need to set it again.

 movlw 0x55 ; begin writing
 movwf EECON2
 movlw 0xAA
 movwf EECON2
 bsf EECON1,WT

After these instructions execute and you set the WT bit to Logic 1, the PIC
automatically looks at the value stored in EEADR and uses it as the EEPROM
memory address from which to write to. It also looks at the value stored in
EEDATA and uses this as the data that will be written.

The PIC will take some time to write this new data because that is the nature of
EEPROM memory. You can read from it at the same speed as normal RAM, but
it takes a lot longer to store data which, as you know, will be permanent until
overwritten again.

After the PIC has finished writing the data to the specified location, the WT bit is
automatically set back to Logic 0 again and the EEIF flag gets set to Logic 1.
The time it takes for the location to be written to varies a little bit, but is usually
around 10 milli-seconds. (10mS)
This doesn’t sound like much, but it is quite a long time in microprocessor terms.
A PIC running with a clock speed of 4MHz can process 10,000 instructions
during this write time.

You cannot write another byte of data to the EEPROM unless the PIC has
finished writing that last byte. If you try, you will more than likely get errors.

There are two ways to tell when the write cycle is completed.

One is by testing the WR bit for a Logic 1, and the other is by using interrupts.
We will not discuss using interrupts here.

After the sequence of instructions is completed, the last instruction sets the WR
bit to Logic 1. The data is now written to the EEPROM and when finished the
WR bit is automatically cleared back to Logic 0. We can use these instructions
to create a loop to wait around and test for this condition. The RP0 bit is still set
for RAM page 1, so there is no need to worry about it.

WriteWait btfsc EECON1,WR ; wait for write completion
 goto WriteWait

Once this loop exits, it is safe to write another byte of data.

mICro’s Next Projects - Page 41

If the write cycle is started but gets interrupted by something like a MCLR or
WDT reset, then the WRERR bit in EECON1 is set to Logic 1. This is the WRITE
ERROR bit. If you do a write to EEPROM write and afterwards this bit equals
Logic 1, then you will have to rewrite the location.

Here is the full list of instructions in a subroutine.

;
; SUBROUTINE: WRITE TO EEPROM
; On entry, W = data to be written
; and EEADR is already set
;
EepWrite movwf EEDATA
 bsf STATUS,RP0 ; RAM Page 1
 bsf EECON1,WREN ; enable EEPROM writes
 movlw 0x55 ; begin writing
 movwf EECON2
 movlw 0xAA
 movwf EECON2
 bsf EECON1,WR
WriteWait btfsc EECON1,WR ; wait for write completion
 goto WriteWait
 bcf STATUS,RP0 ; RAM Page 0
 return

To use the EEPROM write subroutine, you must write the data to the EEADR
register and then load the W register with the data that will be written.

In this example, PORTB will be read 64 times and the data stored in each
consecutive EEPROM location. The EEADR register always has the correct
address value before calling the EepWrite subroutine.

 clrf EEADR ; set first EEPROM address
EepLoop movf PORTB,W ; get data from PORTB
 call EepWrite ; write the data
 incf EEADR ; next address location
 movlw d’64’ ; test if written to all
 xorwf EEADR,W
 btfss STATUS,Z
 goto EepLoop ; no

; all done

These examples are illustrated in the file called eeptest.asm. You can use
MPLAB to assemble it and experiment with the code if you like.

If you try to write to an EEPROM address greater than 63dec, then the value will
be truncated. For example, location 64 will goto address 0, location 65 to
address 1, etc.

mICro’s Next Projects - Page 42

Using the 16F873 chip.

This section deals with reading and writing to the EEPROM memory on a
PIC16F873 which is used on the MicroPro PCB. It is important for you to
understand the differences with the EEPROM read/write routines with this chip
because it is used with some of the software in MICRO’s.

The code is essentially the same except that the EEPROM registers, EEDATA,
EEADR, EECON1 and EECON2 are in different RAM pages. The 16F873 also has
the ability to write data to it’s own internal code memory (ROM) so there is an
extra bit in the EECON1 register to handle this. This bit is called EEPGD (bit 7).

The MicroSim and MicroPlay simulators cannot simulate reading and writing to
the EEPROM while the code is being simulated on the MicroPro board at the
same time. This is because the simulators are set up for the 16F84 and the
MicroPro PCB is using a 16F873 chip.

You can use the 16F84 EEPROM read/write routines on the MicroSim and
MicroPlay simulators to see how they work when there are not used with the
external MicroPro board.

Here is the code that is necessary to Read/Write from the 16F873 EEPROM.

;
; SUBROUTINE: READ FROM 16F873 EEPROM
; On entry, W = address to read from
; On exit, W = data that was read
;
EepRead bcf STATUS,RP0 ; RAM Page 2
 bsf STATUS,RP1
 movwf EEADR
 bsf STATUS,RP0 ; RAM Page 3
 bcf EECON1,EEPGD ; data EEPROM
 bsf EECON1,RD ; read the data
 bcf STATUS,RP0 ; RAM Page 2
 movf EEDATA,W
 bcf STATUS,RP1 ; RAM Page 1
 return
;
; SUBROUTINE: WRITE TO 16F873 EEPROM
; On entry, W = data to be written
; and EEADR is already set
;
EepWrite bsf STATUS,RP1 ; RAM Page 2
 bcf STATUS,RP0
 movwf EEDATA
 bsf STATUS,RP0 ; RAM Page 3
 bcf EECON1,EEPGD ; data EEPROM
 bsf EECON1,WREN ; enable EEPROM writes
 movlw 0x55 ; begin writing

mICro’s Next Projects - Page 43

 movwf EECON2
 movlw 0xAA
 movwf EECON2
 bsf EECON1,WR
WriteWait btfsc EECON1,WR ; wait for write completion
 goto WriteWait
 bcf STATUS,RP1 ; RAM Page 0
 bcf STATUS,RP0
 return

A similar READ example can be used with the 16F873.

 bsf STATUS,RP1 ; RAM Page 2
 clrf EEADR ; set for first address
EEloop call EepRead ; get the data
 movwf PORTB ; send to PORTB
 bsf STATUS,RP1 ; RAM Page 2
 incf EEADR ; set for next address
 movlw d’64’ ; test for last address
 xorwf EEADR,W
 btfss STATUS,Z
 goto EEloop ; not last
 bcf STATUS,RP1 ; RAM Page 0

Here is a similar routine for writing.

 bsf STATUS,RP1 ; RAM Page 2
 clrf EEADR ; set first EEPROM address
EepLoop bcf STATUS,RP1 ; RAM Page 0
 movf PORTB,W ; get data from PORTB
 call EepWrite ; write the data
 bsf STATUS,RP1 ; RAM Page 2
 incf EEADR ; next address location
 movlw d’64’ ; test if written to all
 xorwf EEADR,W
 btfss STATUS,Z
 goto EepLoop ; no
 bcf STATUS,RP1 ; RAM Page 0

As you can see, the routines are a little bit more difficult because of the extra
RAM pages that are used in the 16F873.

mICro’s Next Projects - Page 44

KeyPads

Sometimes in your projects you need to be able to get input data from a user.
This may be as simple as a switch operating, or as complex as a serial interface
from a PC or other types of equipment.

A common input device is the keypad, and for hobby use, these usually consist
of 12 or 16 keys arranged as 3 X 4 or 4 X 4 respectively.

In this example we will look at the 16 key variety.

These keypads are arranged in a 4 X 4 format as
shown here. The switch connections are wired in a
matrix type of arrangement to keep the connector
count as low as possible.

You can see in the diagram that the keys are
arranged in 4 Rows and 4 columns. Port pins RB0
to RB3 are connected to the Rows and pins RB4 -
RB7 are connected to the Columns.

The operation of these keypads is quite easy as
each key is just a simple switch.

If key ‘0’ is pressed, this creates a short between Row 1 and Column 1
If key ‘1’ is pressed, this creates a short between Row 1 and Column 2
If key ‘2’ is pressed, this creates a short between Row 1 and Column 3
If key ‘3’ is pressed, this creates a short between Row 1 and Column 4

If key ‘4’ is pressed, this creates a short between Row 2 and Column 1

If key ‘F’ is pressed, this creates a short between Row 4 and Column 4

The task at hand is how to read this keypad with a PIC.

The solution is reasonably simple and involves writing software that will be able
to detect if any key is pressed. This action can be called ‘scanning a keypad’.

What if we set the PortB pins connected to the columns as inputs, and tied all of
these to ground via 10K resistors as shown in the diagram. If we now read from
PortB, we would see that RB4 to RB7 would all be at Logic 0.

Now suppose PortB pins RB0 to RB3 are set as outputs and are all at Logic 0.

mICro’s Next Projects - Page 45

In this state, would any of the input pins read any different if a key is pressed?
No, they wouldn’t. With no keys pressed, you would always read Logic 0’s, and
with any of the key pressed, you would still read Logic 0’s.

What happens if we set pin RB0 as an output at Logic 1. That will put 5 volts
onto the keypad along Row 1.

With no keys pressed, pins RB4 to RB7 will still read as Logic 0.

Now, suppose key ‘0’ is pressed. That will cause pin RB7 to read as Logic 1.

If Key ‘1’ is pressed, RB6 will read as Logic 1.
If Key ‘2’ is pressed, RB5 will read as Logic 1.
If Key ‘3’ is pressed, RB4 will read as Logic 1.

If Key ‘4’ is pressed, RB7 will read as Logic 0.

Why didn’t RB7 read a Logic 1 when Key ‘4’ was
pressed?

That is because we only set RB0 at Logic 1 and
RB1 is still Logic 0, therefore Row 2 is Logic 0.
When Key ‘4’ is pressed you are still switching a
Logic 0 level to RB7.

What you should have noticed is that when a row is set to 5 volts and a key is
pressed on that same row, we can read the logic level change on the
corresponding column input.

mICro’s Next Projects - Page 46

So all we have to do to scan the keypad, is to sequentially set each row to a
Logic 1 and look at the columns to see if any are Logic 1.
If a column is Logic 1 then a key is pressed. If all columns are Logic 0 then no
keys are pressed.

The first thing to do is decide how often, and how fast, to scan the keypad. The
time may vary depending on your project requirements, but in this example, we
will scan the keypad every 65 milli-seconds, or about 15 times per second.

In earlier projects we used a simple delay subroutine to slow things down while
switches were read. In this example we will use a timer which is part of the PIC.
It is called Timer 0, or TMR0, and is located at RAM address 1h. We can use
this timer to do all sorts of timing and counting tasks depending on how it is set
up.

If you want to get familiar with TMR0 see the tutorials presented in MicroPrac.

Here is a simple program that demonstrates how TMR0 can be used to control
how often a program loops. In this example it is about 65mS if the clock speed
for the PIC is 4MHz.

 org 0000h

 bsf STATUS,RP0 ; ram page 1
 movlw b'11000111' ; set TMR0 internal clk
 movwf OPTION_REG ; prescale 1:256
 bcf STATUS,RP0 ; ram page 0

MnLoop btfss INTCON,T0IF ; wait for TMR0 overflow
 goto MnLoop

 bcf INTCON,T0IF ; clear TMR0 overflow flag

 goto MnLoop ; continue forever

The register that controls how TMR0 operates is called the OPTION register and
this is located in RAM page 1 at address 81h. If you look at page 16 of the
16F84 data sheet you can see some information about this register. It is located
on the CD ROM in the PDF directory - ‘pic16f8x.pdf’.

The first instructions set TMR0 so that is incremented from the PIC’s internal
clock (bit 5), the Prescaler is assigned to TMR0 (bit 3), and the Prescaler is set
to divide by 256 (bits 2 - 0).

TMR0 is an 8 bit register so it can only hold values from 00h to FFh. If the value
in TMR0 is FFh and it increments, the new value will be 00h. This is called
overflowing, or wrapping around to zero.

mICro’s Next Projects - Page 47

Every time this event happens, a special bit in the INTCON register is
automatically set to Logic 1. This bit is called the T0IF bit (bit 2 - see page 17 of
the data sheet).

If you look at the code above you can see that the T0IF bit is continually tested.
If it equals zero, the loop stays at the MnLoop line. When the T0IF bit equals 1,
this loop is broken.

The second loop does nothing but clear the T0IF flag and then return to MnLoop
again where it waits for another overflow condition.

You must write code to clear the T0IF bit if you want to use it again. The PIC
does not clear this flag, it only sets it.

Notice the term FLAG. This is a name for a bit that changes when a certain
event occurs. In this case, the event is TMR0 overflowing and the T0IF bit flags
it as such.

Open MPLAB, load the file called ‘keypad.asm’, and assemble it. (ALT F10).
Close the build window and click on Window - Stopwatch.

Move the cursor so that it is positioned over this code line.

 bcf INTCON,T0IF ; clear TMR0 overflow flag

Now click on it with the RIGHT mouse button, and a popup window will appear.
Click on Break Point(s). The code line should now be red.

 bcf INTCON,T0IF ; clear TMR0 overflow flag

This is a break point and after running, the code will execute to this line and halt.

Press the Run button. When the code stops, check the time on the Stopwatch
window. It will be around 65mS. Press the Zero button and then the Run button
again. The loop execution time will always be around 65mS.

TMR0 is incrementing by one every time the PIC’s internal clock gets
incremented by 256. This timing is caused by the prescaler being active, which
is set for a clock divide ratio of 256.

mICro’s Next Projects - Page 48

Change this code line.

 movlw b'11000111' ; set TMR0 internal clk
 movwf OPTION_REG ; prescale 1:256

to this

 movlw b'11000000' ; set TMR0 internal clk
 movwf OPTION_REG ; prescale 1:2

Reassemble and set the break point again.

When you run the code you will notice that the loop time is considerably shorter
- about 500uS. This is because you have just set the prescaler for a clock divide
ratio of 2, which means TMR0 will now increment once for every 2 PIC clock
cycles.

At this stage we have figured out how to
make a code loop execute every 65mS,
and now we need to use it to scan the
keypad. Here is a flow chart of how the
program will operate.

It should be fairly easy to follow.

If you remember back when we talked
about switches, we had to use debounce
software to avoid switch bounce which
caused the PIC to ‘see’ multiple switch
operations. The keypads are no
different, as they have switch bounce as
well.

There is a major problem with this flow
chart. Can you spot it?

If there is a key pressed, it will be serviced every time the Debounce variable
equals zero. This is not a desirable situation because you would have to remove
your finger very quickly after pressing a key to avoid repetitions.

What you need to do is make the software know the state of the keys from
previous loops.
In this next flow chart you can see that the previous state of the keys is always
known and if a key just changed state then you can take the appropriate action.

mICro’s Next Projects - Page 49

Take some time to go over this flow chart so
that you understand how it works.

You will also notice that there is a Test for

keypress box in the flow chart. This is the
subroutine that does the actual scanning. After
the keypad has been scanned, it would be nice
to have the subroutine return with a value 0 -
15 which corresponds to a key being pressed,
0 - F. With a bit of thought it can be achieved.

Below is a flowchart that explains the keypad
scanning routine.

What it does is make RB0 to RB3 go Logic 1 in
turn. This sequentially puts 5 volts on each of
the keypad rows.

If any of the pins RB4 - RB7 are Logic 1 then a
key has been pressed and the corresponding
value (0 - 15) is returned in a variable called
KEYVAL.

If there were no keys pressed the KeyCheck
routine returns the value 255 (0xFF).

Rows will hold the value that is used to set each
Row to Logic 1 in turn. Columns is a variable
that holds the value returned when the column
bits RB4 - RB7 are read. KeyVal is the value of
the keypress or 0xFF if none pressed.

KeyCheck movlw b'00000001' ; make ready to set Row 1 high (RB0)
 movwf Rows
 clrf KeyVal ; initialise Key Value

mICro’s Next Projects - Page 50

These next lines set a row port bit to Logic 1 and then wait about 20uS for the
port pins to stabilise before checking if any columns are Logic 1. If the software
didn’t wait a little bit, the PIC may read the column pins before they had time to
change. Nothing in the real world changes instantaneously.

RowLoop movf Rows,W ; set a Row high
 movwf PORTB
 movlw 4h ; small delay while PORTB stabilises
 movwf Count
Dloop decfsz Count
 goto DLoop

Now that the pins have stabilised, check if any column pins are high, meaning a
keypress. You can see how we only check bits RB4 - RB7 by masking the lower
4 bits with the AND instruction and then using the Z flag to test the result.

 movf PORTB,W ; read portB
 andlw b'11110000'
 movwf Columns ; save the data - only interested in upper 4 bits
 btfss STATUS,Z
 goto ChkColm ; Z = clear, key must be pressed

After the AND instruction has executed, if any column bits were Logic 1, the Zero
flag will be clear. If no keys are pressed and all columns are Logic 0, the Zero
flag will be set.

Example when Row 1 = Logic 1.- no keys pressed

movf PORTB,W ; read portB

W = 00000001

andlw b’11110000’

0000 0001
AND 1111 0000

= 0000 0000

result is 0, Z is set

mICro’s Next Projects - Page 51

Example when Row 1 = Logic 1.- key ‘0’ is pressed

movf PORTB,W ; read portB

W = 10000001

andlw b’11110000’

1000 0001
AND 1111 0000

= 1000 0000

result is not 0, Z is clear

If no keys are pressed, set the next Row to Logic 1. Also add, 4 to the KeyVal
variable, because we are now looking at the next row of 4 keys.

 movlw 4h ; no bits set for this row
 addwf KeyVal ; looking at next row
 goto NextRow

This next section of code is executed when a column bit was Logic one and the
Z flag was clear. The idea is to check each of the 4 column bits and when we
find one that is set, exit the routine and KeyVal equals the value of the
keypress. If the bit we are testing is not set, then add 1 to the KeyVal variable
and test the next bit. One of the 4 upper bits stored previously in Columns will
be set.

ChkColm bcf STATUS,C ; clear the carry bit
 rlf Columns ; if Carry = 1, key is pressed
 btfsc STATUS,C
 goto LowRow ; key is pressed, KeyVal = key

 incf KeyVal ; on next column so increment Key Value
 movf Columns ; if = 0, then all columns checked for this row
 btfss STATUS,Z
 goto ChkColm ; check value of next column

You can see that by using this method that KeyVal always equals the value of
the current key being tested.

mICro’s Next Projects - Page 52

The current row that was tested did not have any keys pressed, so now we move
on to the next. It is simply a matter of setting the current row to Logic 0 and the
next to Logic 1 which can be done with the RLF instruction.

Rows = 0000 0001 for Row 1 - initial setting when routine started
Rows = 0000 0010 for Row 2
Rows = 0000 0100 for Row 3
Rows = 0000 1000 for Row 4
Rows = 0001 0000 when all rows tested

The value in Rows is written to PortB to set a keypad row to Logic 1. It is
essential that you clear the carry bit before using the RLF Rows instruction. Can
you guess why?

You can see also that when bit 4 of Rows = 1 that we have tested all of the rows
on the keypad. If this happens then no keys have been pressed, so set KeyVal
equal to 0xFF(255 dec) and exit.

NextRow bcf STATUS,C ; clear the carry bit
 rlf Rows ; make ready to set next Row = high
 btfss Rows,4 ; test if all Rows have been set
 goto RowLoop ; not yet, bit 4 will be set when all rows
checked
 movlw 0xFF ; no keys pressed
 movwf KeyVal

This is where the routine exits so all keypad rows are set to Logic 0. At this
point, if a key has been pressed, KeyVal will equal it’s value (0 - 15), and if no
key was pressed then KeyVal = 255.

LowRow clrf PORTB ; all rows = low
 return ; no key was pressed, KeyVal bit 7 still = 1

Please check this routine out thoroughly and be satisfied that you understand it
before proceeding.

By the way, you had to clear the carry bit before using the RLF Rows instruction
because you if you don’t, and the carry bit is set, more than 1 keypad row will be
set to Logic 1.

mICro’s Next Projects - Page 53

Here is the listing for the main code loop.

 clrf PORTA
 clrf PORTB
 bsf STATUS,RP0 ; ram page 1
 clrf TRISA ; portA = all outputs
 movlw b'11110111' ; PortB 7 - 4 = inputs
 movwf TRISB ; 3 - 0 = outputs
 movlw b'11000010' ; set TMR0 internal clk
 movwf OPTION_REG ; prescale 1:256
 bcf STATUS,RP0 ; ram page 0

 clrf Debounce ; these registers need to be
 clrf Flags ; initialised to zero

MnLoop btfss INTCON,T0IF ; wait for TMR0 overflow
 goto MnLoop ; approx 65mS @ 4MHz clock

 bcf INTCON,T0IF

 movf Debounce ; if Debounce = 0, test keypad
 btfsc STATUS,Z
 goto TestKP

 decf Debounce ; else decrement it
 goto MnLoop ; and ignore keypad
;
; TEST FOR A KEYPRESS ON THE KEYPAD
;
TestKP call KeyCheck ; check keypad

 btfss KeyVal,7 ; if = 1 then no key pressed
 goto KeyIsDown

 btfss Flags,Key ; no key pressed
 goto MnLoop ; and key is already released

 bcf Flags,Key ; flag key is released
 movlw 3h ; set debounce period
 movwf Debounce
 goto MnLoop

KeyIsDown btfsc Flags,Key ; if = 0 then key just pressed
 goto MnLoop ; key is still pressed

 bsf Flags,Key ; flag key is pressed
 movlw 3h ; set debounce period
 movwf Debounce

 movf KeyVal,W ; service key
 movwf PORTA ; write KeyVal to PORTA

 goto MnLoop

mICro’s Next Projects - Page 54

You can notice in the loop that it knows when a key has been pressed or not by
testing bit 7 of KeyVal. This bit will be 0 if a key is pressed because the value
stored in KeyVal will only be from 0 - 15. This bit will be 1 if a key has not been
pressed because the value stored in KeyVal will be 0xFF.
When a key has been pressed, and it has just been pressed, the value stored in
KeyVal is written to PORTA. The value here can be viewed by connecting LEDs
to the IO pins via a 1K resistor.

Each time a key is just pressed or just released, the Debounce counter is set to
3h. The keypad is not read again until this counter equals zero, thus we get a
debounce delay of 3 loops or 3 X 65mS or 135mS.

The complete code listing is available in the Software directory and is called
keypad1.asm. Load it into MPLAB and check it out.

In earlier tutorials we saw that we can add a value to the PCL to change the
program counter. We can use that technique here to create a jump table to
process each keypress and use KeyVal as the offset.

 movf KeyVal,W
 andlw 0fh ; make sure KeyVal does not exceed 15
 addwf PCL
 goto Key1
 goto Key2
 goto Key3
 goto Key4
 goto Key5
 goto Key6
 goto Key7
 goto Key8
 goto Key9
 goto KeyA
 goto KeyB
 goto KeyC
 goto KeyD
 goto KeyE
 goto KeyF

Key1 ; process key 1
 goto MnLoop

etc

Be aware of ROM page boundaries if you use code like this.

Another problem which may arise when you create code loops with TMR0. To
ensure even timing on every loop, you must make sure that all of the code inside
the loop executes before TMR0 overflows. In this application it may not matter
much, but some of your applications may have critical timing requirements and
will not function properly.

